Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):m525–m526. doi: 10.1107/S1600536812013232

cis-(Acetato-κ2 O,O′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

Tapashi G Roy a,, Debashis Palit a, Babul Chandra Nath a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3343905  PMID: 22589873

Abstract

The complete cation in the title hydrated mol­ecular salt, [Ni(CH3CO2)(C16H36N4)]ClO4·H2O, is generated by the application of crystallographic twofold symmetry; the perchlorate anion and water mol­ecule are each disordered around a twofold axis. The NiII atom exists within a cis-N4O2 donor set based on a strongly distorted octa­hedron and defined by the four N atoms of the macrocyclic ligand and two O atoms of a symmetrically coordinating acetate ligand. In the crystal, hydrogen bonding (water–acetate/perchlorate O—H⋯O and amine–perchlorate N—H⋯O) leads to layers in the ab plane. The layers stack along the c axis, being connected by C—H⋯O(water) inter­actions. The crystal studied was found to be a non-merohedral twin; the minor component refined to 15.9 (6)%.

Related literature  

For background to macrocyclic complexes, see: Hazari et al. (2010). For a related structure, see: Roy et al. (2012). For the treatment of data from twinned crystals, see: Spek (2009).graphic file with name e-68-0m525-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C2H3O2)(C16H36N4)]ClO4·H2O

  • M r = 519.71

  • Monoclinic, Inline graphic

  • a = 9.4041 (2) Å

  • b = 15.9593 (4) Å

  • c = 16.0721 (6) Å

  • β = 96.534 (3)°

  • V = 2396.48 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.58 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.850, T max = 1.000

  • 5502 measured reflections

  • 2480 independent reflections

  • 2286 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.162

  • S = 1.09

  • 2480 reflections

  • 171 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013232/hb6703sup1.cif

e-68-0m525-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013232/hb6703Isup2.hkl

e-68-0m525-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni—O1 2.118 (2)
Ni—N1 2.089 (3)
Ni—N2 2.136 (3)
O1i—Ni—O1 62.28 (13)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 2.47 3.289 (14) 154
N1—H1⋯O3i 0.88 2.35 3.181 (9) 158
N2—H2⋯O4ii 0.88 2.50 3.276 (8) 148
O1w—H1w1⋯O1iii 0.84 1.94 2.754 (11) 163
O1w—H1w2⋯O2 0.84 2.14 2.950 (18) 163
C3—H3A⋯O1Wiv 0.99 2.14 3.057 (13) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the University Grand Commission (UGC), Bangladesh, for a research fellowship to BCN, and to the Research Support and Publication Division, University of Chittagong, for a research grant (5320/res/pub-CU/2012) to TGR. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2010; Roy et al., 2012), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.

The asymmetric unit of (I) comprises half a NiL(O2CMe) cation, Fig. 1, as this is has crystallographic twofold symmetry, half a perchlorate anion (this is disordered about a twofold axis) and half a water molecule of solvation (this is also disordered about a twofold axis); where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The NiII atom exists within a cis-N4O2 donor set defined by the four N atoms of the macrocyclic ligand and two acetate-O atoms, Table 1. The coordination geometry is based on an octahedron. There are significant distortions from the ideal geometry owing in part to the restricted bite angle of the acetate ligand as manifested in the O1—Ni—O1i angle of 62.28 (13)°; symmetry operation i: 1 - x, y, 3/2 - z. In particular, this bite angle restricts the putative trans O1—Ni—O1 angle to 158.84 (12)°; the N2—Ni—N2i angle = 175.92 (17)°.

In the crystal packing, the water molecule forms O—H···O hydrogen bonds to the acetate-O1 and perchlorate-O2 atoms, while the amine-H atoms form hydrogen bonds to perchlorate-O atoms; the N1—H atom is bifurcated, Table 2. The hydrogen bonding leads to layers in the ab plane, Fig. 2. Layers are connected along the c axis by C—H···O(water) interactions, Fig. 3 and Table 2.

Experimental

The title complex, (I), was prepared by the anion exchange reaction of [NiL(O2CMe)][O2CMe] with perchlorate, where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. Thus, [NiL(O2CMe)][O2CMe] (0.495 g, 1.0 mmol) was dissolved in hot methanol (40 ml) and sodium perchlorate hexahydrate (0.460 g, 2.0 mmol) added. The reaction mixture was heated for 15 min. During heating a blue product separated out. After cooling at room temperature for 30 min, the product, (I), was filtered off, washed with methanol followed by diethyl ether and dried in a desiccator over silica-gel. Light-purple prisms of (I) were obtained from slow evaporation of its methanol solution. Yield 65%. M.pt: 512–513 K. Anal. Calc for C18H41ClN4NiO7: C, 41.68; H, 7.97; N, 10.81; Ni, 11.18%. Found: C, 44.53; H, 7.72; N, 10.78; Ni, 11.01%. FT—IR (KBr, cm-1): 1598 ν(O2C), 3202 ν(N—H), 2981 ν(C—H), 1369 ν(CH3), 1177 ν(C—C), 520 (Ni—N), 1126, 623 ν(ClO4).

Refinement

The H-atoms were placed in calculated positions (O—H = 0.84, N—H = 0.88 and C—H = 0.98–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(carrier atom). The perchlorate and water molecules are disordered across a twofold axis. The Cl—O bonds lengths were restrained to 0.01 Å of each other, as were the O···O contact distances. The anisotropic displacement parameters were restrained to be nearly isotropic. Finally, the methyl-H atoms of the acetate group are disordered over two positions of equal weight. The crystal studied is a non-merohedral twin. The twin domains were separated by the TwinRotMat routine in PLATON (Spek, 2009). The minor component refined to 15.9 (6)%.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the cation in (I) showing displacement ellipsoids at the 50% probability level. The cation has crystallographic twofold symmetry and unlabelled atoms are generated by the symmetry operation 1 - x, y, 3/2 - z.

Fig. 2.

Fig. 2.

A view of the supramolecular layer in the ab plane in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. The illustrated perchlorate and water molecules are disordered about a twofold axis and each is present 50% of the time.

Fig. 3.

Fig. 3.

A view of the unit-cell contents in projection down the a axis in (I). The O—H···O, N—H···O and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively. The illustrated perchlorate and water molecules are disordered about a twofold axis and each is present 50% of the time.

Crystal data

[Ni(C2H3O2)(C16H36N4]ClO4·H2O F(000) = 1112
Mr = 519.71 Dx = 1.440 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yc Cell parameters from 3218 reflections
a = 9.4041 (2) Å θ = 5.5–76.4°
b = 15.9593 (4) Å µ = 2.58 mm1
c = 16.0721 (6) Å T = 100 K
β = 96.534 (3)° Prism, light-purple
V = 2396.48 (12) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2480 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2286 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.024
Detector resolution: 10.4041 pixels mm-1 θmax = 76.6°, θmin = 5.5°
ω scan h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −18→19
Tmin = 0.850, Tmax = 1.000 l = −3→20
5502 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0529P)2 + 9.9029P] where P = (Fo2 + 2Fc2)/3
2480 reflections (Δ/σ)max < 0.001
171 parameters Δρmax = 0.60 e Å3
45 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni 0.5000 0.56446 (4) 0.7500 0.0300 (3)
Cl1 0.4637 (3) 0.86782 (11) 0.71627 (15) 0.0559 (6) 0.50
O2 0.6083 (10) 0.8409 (9) 0.7174 (9) 0.197 (12) 0.50
O3 0.4105 (13) 0.8372 (5) 0.7910 (6) 0.111 (5) 0.50
O4 0.4585 (9) 0.9554 (3) 0.7181 (5) 0.085 (3) 0.50
O5 0.3800 (9) 0.8336 (6) 0.6466 (5) 0.111 (3) 0.50
O1W 0.7196 (13) 0.8995 (10) 0.8864 (7) 0.147 (6) 0.50
H1W1 0.7967 0.9187 0.8726 0.220* 0.50
H1W2 0.6729 0.8794 0.8433 0.220* 0.50
O1 0.4508 (2) 0.45087 (14) 0.80858 (16) 0.0318 (5)
N1 0.5584 (4) 0.64503 (18) 0.6573 (2) 0.0459 (9)
H1 0.5406 0.6967 0.6721 0.069*
N2 0.2798 (3) 0.5692 (2) 0.6999 (2) 0.0412 (8)
H2 0.2413 0.5227 0.7164 0.062*
C1 0.5402 (7) 0.6902 (4) 0.5067 (4) 0.085 (2)
H1A 0.6439 0.6833 0.5075 0.128*
H1B 0.5188 0.7483 0.5206 0.128*
H1C 0.4930 0.6766 0.4508 0.128*
C2 0.4854 (5) 0.6312 (3) 0.5713 (3) 0.0546 (12)
H2A 0.5042 0.5722 0.5546 0.066*
C3 0.3231 (5) 0.6426 (3) 0.5688 (4) 0.0681 (16)
H3A 0.2832 0.6489 0.5095 0.082*
H3B 0.3059 0.6961 0.5973 0.082*
C4 0.2374 (5) 0.5741 (3) 0.6076 (3) 0.0535 (12)
C5 0.2620 (5) 0.4882 (3) 0.5708 (3) 0.0554 (11)
H5A 0.3634 0.4733 0.5823 0.083*
H5B 0.2345 0.4895 0.5102 0.083*
H5C 0.2039 0.4465 0.5963 0.083*
C6 0.0754 (5) 0.5945 (4) 0.5877 (4) 0.0749 (17)
H6A 0.0558 0.6499 0.6102 0.112*
H6B 0.0190 0.5521 0.6134 0.112*
H6C 0.0493 0.5944 0.5269 0.112*
C7 0.2205 (4) 0.6372 (3) 0.7477 (3) 0.0534 (12)
H7A 0.1153 0.6310 0.7446 0.064*
H7B 0.2415 0.6920 0.7229 0.064*
C8 0.2843 (4) 0.6345 (3) 0.8372 (3) 0.0514 (11)
H8A 0.2428 0.6799 0.8689 0.062*
H8B 0.2614 0.5803 0.8624 0.062*
C9 0.5000 0.4119 (3) 0.7500 0.0312 (10)
C10 0.5000 0.3177 (3) 0.7500 0.0555 (16)
H10A 0.4629 0.2973 0.8008 0.083* 0.50
H10B 0.5979 0.2973 0.7486 0.083* 0.50
H10C 0.4392 0.2973 0.7006 0.083* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0253 (4) 0.0131 (4) 0.0551 (6) 0.000 0.0195 (4) 0.000
Cl1 0.0651 (14) 0.0221 (8) 0.0840 (16) 0.0086 (8) 0.0232 (11) −0.0024 (8)
O2 0.201 (15) 0.173 (14) 0.218 (15) 0.025 (9) 0.034 (10) −0.029 (9)
O3 0.150 (9) 0.049 (5) 0.131 (8) −0.031 (5) 0.013 (6) 0.048 (5)
O4 0.104 (7) 0.022 (3) 0.141 (8) 0.003 (3) 0.063 (5) −0.004 (3)
O5 0.117 (7) 0.117 (7) 0.093 (6) 0.022 (6) −0.005 (5) −0.035 (5)
O1W 0.122 (9) 0.232 (15) 0.087 (7) −0.090 (10) 0.017 (6) −0.022 (8)
O1 0.0294 (12) 0.0186 (11) 0.0479 (14) −0.0039 (9) 0.0068 (10) 0.0020 (9)
N1 0.0461 (19) 0.0204 (14) 0.079 (2) 0.0067 (13) 0.0404 (18) 0.0113 (14)
N2 0.0320 (15) 0.0318 (16) 0.063 (2) 0.0107 (13) 0.0194 (14) 0.0140 (14)
C1 0.090 (4) 0.070 (4) 0.106 (5) 0.023 (3) 0.058 (4) 0.052 (3)
C2 0.059 (3) 0.044 (2) 0.067 (3) 0.018 (2) 0.034 (2) 0.026 (2)
C3 0.061 (3) 0.065 (3) 0.083 (3) 0.034 (2) 0.029 (3) 0.044 (3)
C4 0.038 (2) 0.058 (3) 0.066 (3) 0.0198 (19) 0.0136 (19) 0.024 (2)
C5 0.041 (2) 0.070 (3) 0.054 (2) 0.014 (2) 0.0018 (19) 0.010 (2)
C6 0.044 (3) 0.094 (4) 0.087 (4) 0.032 (3) 0.010 (3) 0.031 (3)
C7 0.038 (2) 0.038 (2) 0.090 (3) 0.0211 (17) 0.033 (2) 0.014 (2)
C8 0.042 (2) 0.034 (2) 0.086 (3) 0.0081 (17) 0.042 (2) 0.002 (2)
C9 0.024 (2) 0.019 (2) 0.050 (3) 0.000 −0.001 (2) 0.000
C10 0.074 (4) 0.017 (2) 0.076 (4) 0.000 0.010 (3) 0.000

Geometric parameters (Å, º)

Ni—O1 2.118 (2) C2—H2A 1.0000
Ni—N1i 2.089 (3) C3—C4 1.532 (7)
Ni—N1 2.089 (3) C3—H3A 0.9900
Ni—O1i 2.118 (2) C3—H3B 0.9900
Ni—N2 2.136 (3) C4—C5 1.521 (7)
Ni—N2i 2.136 (3) C4—C6 1.556 (6)
Cl1—O4 1.400 (5) C5—H5A 0.9800
Cl1—O5 1.404 (6) C5—H5B 0.9800
Cl1—O2 1.424 (8) C5—H5C 0.9800
Cl1—O3 1.439 (7) C6—H6A 0.9800
O1W—H1W1 0.8400 C6—H6B 0.9800
O1W—H1W2 0.8399 C6—H6C 0.9800
O1—C9 1.259 (3) C7—C8 1.495 (7)
N1—C8i 1.481 (5) C7—H7A 0.9900
N1—C2 1.488 (6) C7—H7B 0.9900
N1—H1 0.8800 C8—N1i 1.481 (5)
N2—C7 1.475 (5) C8—H8A 0.9900
N2—C4 1.493 (6) C8—H8B 0.9900
N2—H2 0.8800 C9—O1i 1.259 (3)
C1—C2 1.534 (6) C9—C10 1.503 (7)
C1—H1A 0.9800 C10—H10A 0.9800
C1—H1B 0.9800 C10—H10B 0.9800
C1—H1C 0.9800 C10—H10C 0.9800
C2—C3 1.532 (6)
N1i—Ni—N1 104.01 (18) C3—C2—H2A 108.2
N1i—Ni—O1i 158.84 (12) C1—C2—H2A 108.2
N1—Ni—O1i 96.96 (11) C2—C3—C4 118.2 (3)
N1i—Ni—O1 96.96 (11) C2—C3—H3A 107.8
N1—Ni—O1 158.84 (12) C4—C3—H3A 107.8
O1i—Ni—O1 62.28 (13) C2—C3—H3B 107.8
N1i—Ni—N2 85.68 (14) C4—C3—H3B 107.8
N1—Ni—N2 91.80 (13) H3A—C3—H3B 107.1
O1i—Ni—N2 96.56 (11) N2—C4—C5 107.7 (3)
O1—Ni—N2 86.94 (11) N2—C4—C3 110.4 (4)
N1i—Ni—N2i 91.80 (13) C5—C4—C3 112.0 (4)
N1—Ni—N2i 85.68 (14) N2—C4—C6 111.1 (4)
O1i—Ni—N2i 86.94 (11) C5—C4—C6 107.3 (5)
O1—Ni—N2i 96.56 (11) C3—C4—C6 108.4 (4)
N2—Ni—N2i 175.92 (17) C4—C5—H5A 109.5
O4—Cl1—O5 112.8 (5) C4—C5—H5B 109.5
O4—Cl1—O2 109.7 (5) H5A—C5—H5B 109.5
O5—Cl1—O2 109.9 (5) C4—C5—H5C 109.5
O4—Cl1—O3 107.8 (4) H5A—C5—H5C 109.5
O5—Cl1—O3 108.5 (5) H5B—C5—H5C 109.5
O2—Cl1—O3 108.0 (5) C4—C6—H6A 109.5
H1W1—O1W—H1W2 107.9 C4—C6—H6B 109.5
C9—O1—Ni 88.4 (2) H6A—C6—H6B 109.5
C8i—N1—C2 113.0 (3) C4—C6—H6C 109.5
C8i—N1—Ni 103.3 (3) H6A—C6—H6C 109.5
C2—N1—Ni 116.1 (2) H6B—C6—H6C 109.5
C8i—N1—H1 108.0 N2—C7—C8 110.3 (3)
C2—N1—H1 108.0 N2—C7—H7A 109.6
Ni—N1—H1 108.0 C8—C7—H7A 109.6
C7—N2—C4 113.9 (3) N2—C7—H7B 109.6
C7—N2—Ni 103.7 (3) C8—C7—H7B 109.6
C4—N2—Ni 120.9 (2) H7A—C7—H7B 108.1
C7—N2—H2 105.7 N1i—C8—C7 110.0 (3)
C4—N2—H2 105.7 N1i—C8—H8A 109.7
Ni—N2—H2 105.7 C7—C8—H8A 109.7
C2—C1—H1A 109.5 N1i—C8—H8B 109.7
C2—C1—H1B 109.5 C7—C8—H8B 109.7
H1A—C1—H1B 109.5 H8A—C8—H8B 108.2
C2—C1—H1C 109.5 O1i—C9—O1 120.9 (4)
H1A—C1—H1C 109.5 O1i—C9—C10 119.6 (2)
H1B—C1—H1C 109.5 O1—C9—C10 119.6 (2)
N1—C2—C3 111.1 (4) C9—C10—H10A 109.5
N1—C2—C1 112.4 (5) C9—C10—H10B 109.5
C3—C2—C1 108.6 (4) C9—C10—H10C 109.5
N1—C2—H2A 108.2
N1i—Ni—O1—C9 −175.68 (14) O1—Ni—N2—C4 −123.0 (3)
N1—Ni—O1—C9 11.9 (4) C8i—N1—C2—C3 180.0 (3)
O1i—Ni—O1—C9 0.0 Ni—N1—C2—C3 60.9 (4)
N2—Ni—O1—C9 99.05 (14) C8i—N1—C2—C1 −58.0 (4)
N2i—Ni—O1—C9 −83.05 (14) Ni—N1—C2—C1 −177.1 (3)
N1i—Ni—N1—C8i 109.4 (3) N1—C2—C3—C4 −73.5 (6)
O1i—Ni—N1—C8i −67.8 (3) C1—C2—C3—C4 162.3 (5)
O1—Ni—N1—C8i −78.4 (5) C7—N2—C4—C5 −161.4 (3)
N2—Ni—N1—C8i −164.6 (3) Ni—N2—C4—C5 74.0 (4)
N2i—Ni—N1—C8i 18.6 (3) C7—N2—C4—C3 76.1 (4)
N1i—Ni—N1—C2 −126.3 (3) Ni—N2—C4—C3 −48.5 (4)
O1i—Ni—N1—C2 56.5 (3) C7—N2—C4—C6 −44.2 (5)
O1—Ni—N1—C2 45.9 (5) Ni—N2—C4—C6 −168.8 (3)
N2—Ni—N1—C2 −40.3 (3) C2—C3—C4—N2 65.0 (6)
N2i—Ni—N1—C2 142.9 (3) C2—C3—C4—C5 −55.0 (7)
N1i—Ni—N2—C7 10.5 (2) C2—C3—C4—C6 −173.1 (5)
N1—Ni—N2—C7 −93.4 (2) C4—N2—C7—C8 −172.0 (3)
O1i—Ni—N2—C7 169.4 (2) Ni—N2—C7—C8 −38.6 (4)
O1—Ni—N2—C7 107.7 (2) N2—C7—C8—N1i 60.1 (4)
N1i—Ni—N2—C4 139.7 (3) Ni—O1—C9—O1i 0.0
N1—Ni—N2—C4 35.8 (3) Ni—O1—C9—C10 180.000 (1)
O1i—Ni—N2—C4 −61.4 (3)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.88 2.47 3.289 (14) 154
N1—H1···O3i 0.88 2.35 3.181 (9) 158
N2—H2···O4ii 0.88 2.50 3.276 (8) 148
O1w—H1w1···O1iii 0.84 1.94 2.754 (11) 163
O1w—H1w2···O2 0.84 2.14 2.950 (18) 163
C3—H3A···O1Wiv 0.99 2.14 3.057 (13) 153

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, y+1/2, z; (iv) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6703).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.
  5. Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m494–m495. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812013232/hb6703sup1.cif

e-68-0m525-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013232/hb6703Isup2.hkl

e-68-0m525-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES