Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o922–o923. doi: 10.1107/S1600536812008306

Dimethyl 2,6-dimethyl-4-(3-phenyl-1H-pyrazol-4-yl)-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

Hoong-Kun Fun a,*,, Suhana Arshad a, Shridhar Malladi b, Kammasandra Nanjunda Shivananda c, Arun M Isloor b
PMCID: PMC3343908  PMID: 22589989

Abstract

In the title compound, C20H21N3O4, the 1,4-dihydro­pyridine ring adopts a boat conformation. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The pyrazole ring makes dihedral angles of 87.81 (7) and 45.09 (7)° with the mean plane of the 1,4-dihydro­pyridine ring and the phenyl ring, respectively. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature  

For a related structure and background references, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).graphic file with name e-68-0o922-scheme1.jpg

Experimental  

Crystal data  

  • C20H21N3O4

  • M r = 367.40

  • Orthorhombic, Inline graphic

  • a = 13.9632 (6) Å

  • b = 10.9908 (5) Å

  • c = 11.8465 (5) Å

  • V = 1818.04 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.38 × 0.22 × 0.14 mm

Data collection  

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.965, T max = 0.987

  • 17004 measured reflections

  • 2788 independent reflections

  • 2687 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.080

  • S = 1.03

  • 2788 reflections

  • 256 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008306/hb6648sup1.cif

e-68-0o922-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008306/hb6648Isup2.hkl

e-68-0o922-Isup2.hkl (136.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008306/hb6648Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O3 0.98 2.29 2.9114 (18) 121
N3—H1N3⋯N2i 0.93 (2) 2.14 (2) 3.0529 (17) 167 (2)
N1—H1N1⋯O3ii 0.84 (3) 2.01 (3) 2.8438 (16) 173 (2)
C5—H5A⋯O1iii 0.95 2.60 3.4895 (18) 157
C20—H20C⋯O1iv 0.98 2.38 3.3524 (19) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and SA thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for an award from the Academic Staff Training Scheme (ASTS). AMI is thankful to Director of National Institute of Technology Karnataka, Surathkal, India, for providing research facilities. AMI also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for a ’Young Scientist’ award.

supplementary crystallographic information

Comment

As part of our ongoing studies of dihydropyridine/pyrazole derivatives, we have synthesized the title compound, (I), to study its crystal structure.

The molecular structure in shown in Fig. 1. The 1,4-dihydropyridine ring (N3/C10–C14) adopts a boat conformation with puckering parameters Q = 0.3273 (13) Å, Θ= 106.1 (2)° and Φ= 356.4 (2)°. An intramolecular C18—H18A···O3 hydrogen bond (Table 1) forms an S(6) ring motif (Bernstein et al., 1995). The 1H-pyrazole ring (N1/N2/C7–C9) makes dihedral angles of 87.81 (7) and 45.09 (7)° with the mean plane of the 1,4-dihydropyridine (N3/C10–C14) ring and benzene (C1–C6) ring, respectively. Bond lengths and angles are comparable to the related structure (Fun et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N3—H1N3···N2, N1—H1N1···O3, C5—H5A···O1 and C20—H20C···O1 hydrogen bonds (Table 1) into three-dimensional network.

Experimental

3-Phenyl-1H-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), methylacetoacetate (0.232 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) in ethanol (7 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol:water mixture as yellow blocks. Yield: 0.28 g, 76.21%. M.p.: 398–400 K.

Refinement

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.84 (3) and 0.93 (2) Å]. All the other H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. Ten outliners 8 3 5, 6 0 - 7, 8 0 6, 8 1 6, 8 2 5, 8 1 5, 8 0 5, 6 0 4, 4 0 3 and 8 5 0 were omitted. Since there are not sufficent anomalous dispersion to determine the absolute structure, 2358 Freidel pairs were merged for the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H21N3O4 F(000) = 776
Mr = 367.40 Dx = 1.342 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8800 reflections
a = 13.9632 (6) Å θ = 2.4–30.1°
b = 10.9908 (5) Å µ = 0.10 mm1
c = 11.8465 (5) Å T = 100 K
V = 1818.04 (14) Å3 Block, yellow
Z = 4 0.38 × 0.22 × 0.14 mm

Data collection

Bruker SMART APEXII DUO CCD diffractometer 2788 independent reflections
Radiation source: fine-focus sealed tube 2687 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.965, Tmax = 0.987 k = −14→15
17004 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1941P] where P = (Fo2 + 2Fc2)/3
2788 reflections (Δ/σ)max = 0.001
256 parameters Δρmax = 0.30 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.46234 (8) 0.61784 (10) 0.30293 (11) 0.0235 (2)
O2 0.32205 (8) 0.59619 (9) 0.39414 (10) 0.0205 (2)
O3 0.15716 (8) 1.09597 (9) 0.48010 (9) 0.0191 (2)
O4 0.14156 (7) 0.90479 (9) 0.54372 (10) 0.0178 (2)
N1 0.37507 (9) 0.72586 (11) 0.77599 (10) 0.0156 (2)
N2 0.42080 (9) 0.83459 (11) 0.77451 (10) 0.0175 (2)
N3 0.44724 (8) 0.99042 (10) 0.40046 (10) 0.0142 (2)
C1 0.18445 (9) 0.58580 (12) 0.61291 (12) 0.0156 (2)
H1A 0.1551 0.6602 0.5914 0.019*
C2 0.13659 (10) 0.47622 (13) 0.59534 (13) 0.0181 (3)
H2A 0.0751 0.4764 0.5611 0.022*
C3 0.17821 (10) 0.36647 (13) 0.62751 (13) 0.0186 (3)
H3A 0.1454 0.2919 0.6152 0.022*
C4 0.26818 (10) 0.36682 (12) 0.67776 (12) 0.0184 (3)
H4A 0.2966 0.2922 0.7004 0.022*
C5 0.31710 (10) 0.47597 (12) 0.69520 (12) 0.0154 (2)
H5A 0.3786 0.4753 0.7295 0.018*
C6 0.27552 (9) 0.58674 (11) 0.66210 (11) 0.0130 (2)
C7 0.32755 (9) 0.70190 (11) 0.67790 (11) 0.0123 (2)
C8 0.40266 (10) 0.87859 (12) 0.67155 (12) 0.0155 (2)
H8A 0.4266 0.9542 0.6448 0.019*
C9 0.34428 (9) 0.80077 (11) 0.60694 (11) 0.0120 (2)
C10 0.31482 (9) 0.82217 (11) 0.48536 (11) 0.0114 (2)
H10A 0.2572 0.7714 0.4684 0.014*
C11 0.39518 (9) 0.78588 (11) 0.40562 (11) 0.0122 (2)
C12 0.46244 (9) 0.86881 (12) 0.37489 (11) 0.0136 (2)
C13 0.35839 (9) 1.03464 (11) 0.43207 (11) 0.0128 (2)
C14 0.28952 (9) 0.95537 (11) 0.46742 (11) 0.0126 (2)
C15 0.39982 (10) 0.66120 (12) 0.36172 (12) 0.0147 (2)
C16 0.31848 (13) 0.47237 (13) 0.35474 (17) 0.0275 (3)
H16A 0.2655 0.4297 0.3918 0.041*
H16B 0.3790 0.4315 0.3727 0.041*
H16C 0.3085 0.4717 0.2729 0.041*
C17 0.55479 (10) 0.84310 (13) 0.31417 (14) 0.0191 (3)
H17A 0.5858 0.7719 0.3480 0.029*
H17B 0.5973 0.9137 0.3205 0.029*
H17C 0.5415 0.8269 0.2344 0.029*
C18 0.35149 (10) 1.17080 (12) 0.42430 (12) 0.0173 (2)
H18A 0.2991 1.1995 0.4724 0.026*
H18B 0.3390 1.1944 0.3459 0.026*
H18C 0.4119 1.2072 0.4495 0.026*
C19 0.19231 (9) 0.99557 (12) 0.49572 (11) 0.0134 (2)
C20 0.04439 (10) 0.93544 (15) 0.57625 (14) 0.0215 (3)
H20A 0.0114 0.8621 0.6027 0.032*
H20B 0.0102 0.9690 0.5110 0.032*
H20C 0.0458 0.9960 0.6370 0.032*
H1N3 0.4908 (15) 1.047 (2) 0.373 (2) 0.025 (5)*
H1N1 0.3705 (16) 0.689 (2) 0.838 (2) 0.032 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0253 (5) 0.0200 (5) 0.0252 (5) 0.0015 (4) 0.0071 (4) −0.0072 (4)
O2 0.0264 (5) 0.0108 (4) 0.0242 (5) −0.0030 (4) 0.0078 (4) −0.0029 (4)
O3 0.0224 (5) 0.0171 (5) 0.0176 (5) 0.0067 (4) 0.0022 (4) 0.0028 (4)
O4 0.0129 (4) 0.0163 (4) 0.0243 (5) −0.0002 (3) 0.0041 (4) −0.0003 (4)
N1 0.0178 (5) 0.0164 (5) 0.0126 (5) −0.0043 (4) −0.0023 (4) 0.0031 (4)
N2 0.0193 (5) 0.0176 (5) 0.0156 (5) −0.0068 (4) −0.0020 (4) 0.0010 (4)
N3 0.0147 (5) 0.0125 (5) 0.0153 (5) −0.0017 (4) 0.0018 (4) 0.0008 (4)
C1 0.0145 (6) 0.0155 (6) 0.0168 (6) 0.0001 (4) −0.0005 (5) 0.0018 (5)
C2 0.0140 (6) 0.0207 (6) 0.0197 (6) −0.0030 (5) −0.0012 (5) −0.0009 (5)
C3 0.0208 (7) 0.0160 (6) 0.0190 (6) −0.0044 (5) 0.0025 (5) −0.0021 (5)
C4 0.0225 (7) 0.0125 (5) 0.0201 (6) −0.0004 (5) 0.0003 (5) 0.0019 (5)
C5 0.0153 (6) 0.0150 (5) 0.0157 (6) 0.0000 (4) −0.0008 (4) 0.0022 (5)
C6 0.0139 (5) 0.0129 (5) 0.0122 (5) −0.0014 (4) 0.0005 (4) 0.0009 (4)
C7 0.0112 (5) 0.0128 (5) 0.0129 (5) −0.0004 (4) −0.0005 (4) 0.0011 (4)
C8 0.0169 (6) 0.0150 (5) 0.0146 (6) −0.0045 (4) −0.0009 (5) 0.0006 (5)
C9 0.0127 (5) 0.0109 (5) 0.0124 (5) −0.0008 (4) 0.0007 (4) 0.0004 (4)
C10 0.0127 (5) 0.0104 (5) 0.0111 (5) 0.0011 (4) 0.0007 (4) 0.0002 (4)
C11 0.0144 (5) 0.0115 (5) 0.0107 (5) 0.0016 (4) 0.0006 (4) −0.0003 (4)
C12 0.0150 (5) 0.0140 (5) 0.0120 (5) 0.0022 (4) 0.0001 (4) 0.0008 (4)
C13 0.0159 (6) 0.0118 (5) 0.0109 (5) 0.0001 (4) −0.0002 (4) 0.0005 (4)
C14 0.0144 (5) 0.0114 (5) 0.0120 (5) 0.0009 (4) 0.0003 (4) 0.0013 (4)
C15 0.0182 (6) 0.0130 (5) 0.0130 (5) 0.0010 (4) −0.0002 (5) 0.0010 (4)
C16 0.0344 (9) 0.0131 (6) 0.0350 (9) −0.0061 (6) 0.0101 (7) −0.0078 (6)
C17 0.0171 (6) 0.0190 (6) 0.0211 (6) 0.0014 (5) 0.0059 (5) 0.0008 (5)
C18 0.0214 (6) 0.0107 (5) 0.0199 (6) −0.0008 (4) 0.0021 (5) 0.0017 (5)
C19 0.0149 (5) 0.0149 (5) 0.0103 (5) 0.0004 (4) −0.0001 (4) −0.0009 (4)
C20 0.0124 (6) 0.0252 (7) 0.0270 (7) −0.0012 (5) 0.0041 (5) −0.0059 (6)

Geometric parameters (Å, º)

O1—C15 1.2142 (17) C7—C9 1.3936 (18)
O2—C15 1.3555 (17) C8—C9 1.4078 (18)
O2—C16 1.4396 (17) C8—H8A 0.9500
O3—C19 1.2219 (16) C9—C10 1.5163 (18)
O4—C19 1.3494 (16) C10—C11 1.5200 (17)
O4—C20 1.4501 (16) C10—C14 1.5209 (17)
N1—N2 1.3551 (16) C10—H10A 1.0000
N1—C7 1.3638 (16) C11—C12 1.3584 (17)
N1—H1N1 0.84 (3) C11—C15 1.4671 (17)
N2—C8 1.3363 (18) C12—C17 1.5034 (18)
N3—C13 1.3840 (17) C13—C14 1.3635 (17)
N3—C12 1.3868 (16) C13—C18 1.5024 (17)
N3—H1N3 0.93 (2) C14—C19 1.4663 (18)
C1—C2 1.3929 (19) C16—H16A 0.9800
C1—C6 1.3989 (18) C16—H16B 0.9800
C1—H1A 0.9500 C16—H16C 0.9800
C2—C3 1.392 (2) C17—H17A 0.9800
C2—H2A 0.9500 C17—H17B 0.9800
C3—C4 1.390 (2) C17—H17C 0.9800
C3—H3A 0.9500 C18—H18A 0.9800
C4—C5 1.3958 (18) C18—H18B 0.9800
C4—H4A 0.9500 C18—H18C 0.9800
C5—C6 1.4045 (17) C20—H20A 0.9800
C5—H5A 0.9500 C20—H20B 0.9800
C6—C7 1.4713 (17) C20—H20C 0.9800
C15—O2—C16 115.74 (12) C12—C11—C15 120.08 (11)
C19—O4—C20 115.57 (11) C12—C11—C10 120.06 (11)
N2—N1—C7 112.86 (11) C15—C11—C10 119.87 (11)
N2—N1—H1N1 117.8 (16) C11—C12—N3 118.84 (11)
C7—N1—H1N1 128.1 (16) C11—C12—C17 126.52 (12)
C8—N2—N1 103.98 (11) N3—C12—C17 114.64 (11)
C13—N3—C12 122.32 (11) C14—C13—N3 119.40 (11)
C13—N3—H1N3 116.5 (13) C14—C13—C18 127.59 (12)
C12—N3—H1N3 117.8 (13) N3—C13—C18 112.99 (11)
C2—C1—C6 120.31 (12) C13—C14—C19 122.05 (11)
C2—C1—H1A 119.8 C13—C14—C10 119.61 (11)
C6—C1—H1A 119.8 C19—C14—C10 118.23 (11)
C3—C2—C1 120.53 (13) O1—C15—O2 122.11 (12)
C3—C2—H2A 119.7 O1—C15—C11 126.99 (13)
C1—C2—H2A 119.7 O2—C15—C11 110.89 (11)
C4—C3—C2 119.47 (13) O2—C16—H16A 109.5
C4—C3—H3A 120.3 O2—C16—H16B 109.5
C2—C3—H3A 120.3 H16A—C16—H16B 109.5
C3—C4—C5 120.53 (13) O2—C16—H16C 109.5
C3—C4—H4A 119.7 H16A—C16—H16C 109.5
C5—C4—H4A 119.7 H16B—C16—H16C 109.5
C4—C5—C6 120.09 (13) C12—C17—H17A 109.5
C4—C5—H5A 120.0 C12—C17—H17B 109.5
C6—C5—H5A 120.0 H17A—C17—H17B 109.5
C1—C6—C5 119.05 (11) C12—C17—H17C 109.5
C1—C6—C7 120.54 (11) H17A—C17—H17C 109.5
C5—C6—C7 120.40 (12) H17B—C17—H17C 109.5
N1—C7—C9 106.37 (11) C13—C18—H18A 109.5
N1—C7—C6 120.98 (11) C13—C18—H18B 109.5
C9—C7—C6 132.60 (12) H18A—C18—H18B 109.5
N2—C8—C9 112.72 (12) C13—C18—H18C 109.5
N2—C8—H8A 123.6 H18A—C18—H18C 109.5
C9—C8—H8A 123.6 H18B—C18—H18C 109.5
C7—C9—C8 104.06 (12) O3—C19—O4 121.37 (12)
C7—C9—C10 130.43 (12) O3—C19—C14 127.54 (12)
C8—C9—C10 125.40 (12) O4—C19—C14 111.09 (11)
C9—C10—C11 110.45 (10) O4—C20—H20A 109.5
C9—C10—C14 110.18 (10) O4—C20—H20B 109.5
C11—C10—C14 109.71 (10) H20A—C20—H20B 109.5
C9—C10—H10A 108.8 O4—C20—H20C 109.5
C11—C10—H10A 108.8 H20A—C20—H20C 109.5
C14—C10—H10A 108.8 H20B—C20—H20C 109.5
C7—N1—N2—C8 −1.15 (16) C14—C10—C11—C15 −147.94 (11)
C6—C1—C2—C3 0.7 (2) C15—C11—C12—N3 168.44 (12)
C1—C2—C3—C4 0.1 (2) C10—C11—C12—N3 −11.42 (18)
C2—C3—C4—C5 −0.5 (2) C15—C11—C12—C17 −11.6 (2)
C3—C4—C5—C6 0.1 (2) C10—C11—C12—C17 168.57 (13)
C2—C1—C6—C5 −1.1 (2) C13—N3—C12—C11 −15.16 (19)
C2—C1—C6—C7 178.25 (13) C13—N3—C12—C17 164.85 (12)
C4—C5—C6—C1 0.7 (2) C12—N3—C13—C14 17.20 (19)
C4—C5—C6—C7 −178.63 (13) C12—N3—C13—C18 −163.94 (12)
N2—N1—C7—C9 0.79 (15) N3—C13—C14—C19 −176.37 (12)
N2—N1—C7—C6 178.43 (12) C18—C13—C14—C19 5.0 (2)
C1—C6—C7—N1 136.67 (13) N3—C13—C14—C10 7.47 (18)
C5—C6—C7—N1 −43.99 (18) C18—C13—C14—C10 −171.21 (13)
C1—C6—C7—C9 −46.4 (2) C9—C10—C14—C13 92.04 (14)
C5—C6—C7—C9 132.93 (16) C11—C10—C14—C13 −29.76 (16)
N1—N2—C8—C9 1.08 (16) C9—C10—C14—C19 −84.27 (14)
N1—C7—C9—C8 −0.10 (14) C11—C10—C14—C19 153.92 (11)
C6—C7—C9—C8 −177.35 (13) C16—O2—C15—O1 0.2 (2)
N1—C7—C9—C10 176.07 (12) C16—O2—C15—C11 179.37 (13)
C6—C7—C9—C10 −1.2 (2) C12—C11—C15—O1 4.6 (2)
N2—C8—C9—C7 −0.63 (16) C10—C11—C15—O1 −175.57 (14)
N2—C8—C9—C10 −177.05 (12) C12—C11—C15—O2 −174.55 (12)
C7—C9—C10—C11 −95.43 (16) C10—C11—C15—O2 5.31 (17)
C8—C9—C10—C11 80.01 (15) C20—O4—C19—O3 −0.85 (19)
C7—C9—C10—C14 143.21 (14) C20—O4—C19—C14 179.34 (11)
C8—C9—C10—C14 −41.35 (16) C13—C14—C19—O3 9.1 (2)
C9—C10—C11—C12 −89.73 (14) C10—C14—C19—O3 −174.67 (13)
C14—C10—C11—C12 31.92 (16) C13—C14—C19—O4 −171.09 (12)
C9—C10—C11—C15 90.41 (14) C10—C14—C19—O4 5.13 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18A···O3 0.98 2.29 2.9114 (18) 121
N3—H1N3···N2i 0.93 (2) 2.14 (2) 3.0529 (17) 167 (2)
N1—H1N1···O3ii 0.84 (3) 2.01 (3) 2.8438 (16) 173 (2)
C5—H5A···O1iii 0.95 2.60 3.4895 (18) 157
C20—H20C···O1iv 0.98 2.38 3.3524 (19) 170

Symmetry codes: (i) −x+1, −y+2, z−1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) −x+1, −y+1, z+1/2; (iv) −x+1/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6648).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417–o1418. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008306/hb6648sup1.cif

e-68-0o922-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008306/hb6648Isup2.hkl

e-68-0o922-Isup2.hkl (136.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008306/hb6648Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES