Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o927–o928. doi: 10.1107/S160053681200832X

Absolute configuration of (1S,2S)-3-methyl-2-phenyl-2,3-dihydro­thia­zolo[2,3-b]quinazolin-5-one

Mostafa M Ghorab a, Mansour S Al-Said a, Maged S Abdel-Kader b, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3343911  PMID: 22589992

Abstract

The absolute structure of the molecule in the crystal of the title compound, C17H14N2OS, was determined by the refinement of the Flack parameter to 0.0 (2) based on 1011 Friedel pairs. The quinazoline ring is essentially planar, with a maximum deviation of 0.037 (2) Å. The thia­zole ring is distorted from planarity [maximum deviation = 0.168 (2) Å] and adopts a slightly twisted envelope conformation, with the C atom as the flap atom. The central thia­zole ring makes dihedral angles of 7.01 (8) and 76.80 (10)° with the quinazoline and phenyl rings, respectively. The corresponding angle between the quinazoline and phenyl rings is 3.74 (9)°. In the crystal, there are no classical hydrogen bonds but stabilization is provided by weak C—H⋯π inter­actions, involving the centroids of the phenyl rings.

Related literature  

For details and applications of quinazoline derivatives, see: Ghorab et al. (2010a ,b ,c ). For related crystal structures, see: Al-Salahi et al. (2012); Priya et al. (2011); Liu et al. (2010). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o927-scheme1.jpg

Experimental  

Crystal data  

  • C17H14N2OS

  • M r = 294.36

  • Orthorhombic, Inline graphic

  • a = 8.4865 (1) Å

  • b = 10.0846 (2) Å

  • c = 16.8290 (3) Å

  • V = 1440.28 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.96 × 0.64 × 0.51 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.251, T max = 0.431

  • 8654 measured reflections

  • 2637 independent reflections

  • 2521 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.109

  • S = 1.08

  • 2637 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), with 1011 Friedel pairs

  • Flack parameter: 0.00 (2)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200832X/nk2145sup1.cif

e-68-0o927-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200832X/nk2145Isup2.hkl

e-68-0o927-Isup2.hkl (126.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C4–C9 and C11–C16 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg3i 0.98 2.91 3.824 (2) 155
C6—H6ACg4ii 0.93 2.81 3.637 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MMG, MSA and MSA are grateful for sponsorship of the Research Center, College of Pharmacy, and the Deanship of Scientific Research, King Saud University, Riyadh, Saudia Arabia. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Quinazoline derivatives are well known as biologically active compounds. Consequently, quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab et al., 2010a,b,c). The crystal structures of 2-Ethoxy-5-methylbis[1,2,4]triazolo[1,5-a:4',3'-c] quinazoline (Al-Salahi et al., 2012), 3-(4-Chlorophenyl)quinazolin-4(3H)-one (Priya et al., 2011) and 2-Anilino-3-(2-hydroxyphenyl)quinazolin-4(3H)-one methanol monosolvate (Liu et al., 2010) have been reported in the literature. Herein, we report the crystal structure of title compound (I).

The asymmetric unit of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C3–C10) ring is essentially planar, with a maximum deviation of 0.037 (2) Å for atom C8. The thiazole (S1/N2/C7–C9) rings adopt an envelope conformation with the C2 (0.168 (2) Å) atom as the flap atom and with puckering parameter, Q = 0.2724 (19) Å and θ = 226.7 (4)° (Cremer & Pople, 1975). The central thiazole (S1/N1/C1–C2,C10) ring makes dihedral angles of 7.01 (8)° and 76.80 (10)° with the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings, respectively. The corresponding angle between the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings is 73.74 (9)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The absolute configuration of the molecule were determined by the refinement of the Flack parameter to 0.0 (2). There are two chiral centres in the molecule. From the structure presented, these centers exhibit the following chiralities: C1 = S and C2 = S.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π interactions (Table 1) involving the centroids of the (C4–C9) and (C11–C16) phenyl rings.

Experimental

A mixture of 2-isothiocyanatobenzoate (1.93 g, 0.01 mole) and 2-amino-1-phenylpropan-1-ol (1.51 g, 0.01 mole) in dry dimethylformamide (30 ml) containing a catalytic amount of triethylamine was refluxed for 6 h. The solid obtained was recrystallized from ethanol to give the title thiazoloquinazline derivative compound. Single crystals suitable for X-ray structural analysis were obtained by slow evaporation from ethanol at room temperature.

Refinement

All H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. 1011 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I).

Crystal data

C17H14N2OS F(000) = 616
Mr = 294.36 Dx = 1.358 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 4079 reflections
a = 8.4865 (1) Å θ = 4.4–71.7°
b = 10.0846 (2) Å µ = 1.99 mm1
c = 16.8290 (3) Å T = 296 K
V = 1440.28 (4) Å3 Block, colourless
Z = 4 0.96 × 0.64 × 0.51 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2637 independent reflections
Radiation source: fine-focus sealed tube 2521 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 71.9°, θmin = 5.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.251, Tmax = 0.431 k = −8→12
8654 measured reflections l = −20→20

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0628P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.22 e Å3
2637 reflections Δρmin = −0.23 e Å3
192 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.107 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), with 1011 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.93740 (6) 0.77405 (8) 0.26159 (3) 0.0835 (3)
N1 0.84292 (17) 0.75544 (18) 0.40678 (9) 0.0558 (4)
N2 0.99073 (19) 0.57264 (18) 0.35894 (9) 0.0585 (4)
O1 0.7394 (3) 0.7625 (3) 0.53134 (11) 0.0983 (7)
C3 0.8142 (2) 0.7024 (3) 0.48182 (12) 0.0654 (5)
C10 0.9264 (2) 0.6865 (2) 0.35080 (10) 0.0540 (4)
C9 0.9715 (2) 0.51345 (19) 0.43270 (11) 0.0561 (4)
C12 0.5242 (2) 0.8021 (2) 0.28662 (15) 0.0693 (6)
H12A 0.5479 0.7496 0.3304 0.083*
C11 0.6379 (2) 0.88563 (18) 0.25601 (12) 0.0556 (4)
C4 0.8811 (2) 0.5710 (2) 0.49297 (11) 0.0598 (5)
C13 0.3752 (3) 0.7954 (3) 0.25291 (17) 0.0743 (6)
H13A 0.2993 0.7396 0.2746 0.089*
C5 0.8607 (3) 0.5028 (3) 0.56509 (14) 0.0774 (6)
H5A 0.8007 0.5405 0.6055 0.093*
C14 0.3400 (3) 0.8704 (2) 0.18807 (17) 0.0730 (6)
H14A 0.2396 0.8670 0.1660 0.088*
C16 0.6023 (3) 0.9594 (2) 0.18898 (14) 0.0633 (5)
H16A 0.6783 1.0144 0.1666 0.076*
C6 0.9290 (4) 0.3807 (3) 0.57612 (17) 0.0875 (8)
H6A 0.9131 0.3350 0.6235 0.105*
C1 0.7973 (2) 0.9010 (2) 0.29489 (15) 0.0659 (5)
H1A 0.8396 0.9878 0.2798 0.079*
C15 0.4533 (3) 0.9515 (2) 0.15507 (14) 0.0723 (6)
H15A 0.4299 1.0010 0.1100 0.087*
C8 1.0433 (3) 0.3896 (2) 0.44566 (15) 0.0744 (6)
H8A 1.1052 0.3517 0.4061 0.089*
C2 0.7980 (2) 0.8926 (2) 0.38635 (14) 0.0659 (5)
H2B 0.6911 0.9094 0.4060 0.079*
C17 0.9107 (4) 0.9910 (3) 0.4252 (3) 0.1039 (11)
H17A 0.9070 0.9806 0.4818 0.156*
H17C 0.8802 1.0797 0.4113 0.156*
H17D 1.0160 0.9746 0.4067 0.156*
C7 1.0225 (4) 0.3247 (3) 0.51644 (19) 0.0874 (8)
H7A 1.0707 0.2431 0.5248 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0541 (3) 0.1285 (5) 0.0680 (3) 0.0297 (3) 0.0168 (2) 0.0362 (3)
N1 0.0436 (7) 0.0702 (9) 0.0535 (8) 0.0037 (6) −0.0037 (6) −0.0028 (7)
N2 0.0529 (8) 0.0726 (10) 0.0500 (7) 0.0055 (7) −0.0055 (6) −0.0051 (7)
O1 0.1001 (14) 0.1344 (18) 0.0602 (9) 0.0463 (14) 0.0130 (8) −0.0049 (10)
C3 0.0512 (9) 0.0952 (14) 0.0497 (9) 0.0092 (10) −0.0022 (8) −0.0043 (9)
C10 0.0393 (7) 0.0739 (11) 0.0490 (8) 0.0004 (7) −0.0014 (7) 0.0020 (7)
C9 0.0526 (9) 0.0635 (10) 0.0522 (9) −0.0071 (7) −0.0092 (7) −0.0034 (7)
C12 0.0519 (10) 0.0741 (12) 0.0820 (13) −0.0033 (8) −0.0106 (9) 0.0223 (10)
C11 0.0469 (8) 0.0523 (8) 0.0675 (10) 0.0055 (6) −0.0032 (8) 0.0022 (8)
C4 0.0472 (8) 0.0815 (12) 0.0507 (9) −0.0083 (8) −0.0059 (7) 0.0028 (8)
C13 0.0491 (10) 0.0816 (13) 0.0923 (16) −0.0055 (9) −0.0084 (10) 0.0104 (12)
C5 0.0615 (12) 0.1126 (18) 0.0579 (11) −0.0103 (12) −0.0015 (9) 0.0107 (12)
C14 0.0527 (10) 0.0768 (13) 0.0896 (15) 0.0096 (9) −0.0178 (11) −0.0050 (11)
C16 0.0634 (11) 0.0560 (9) 0.0705 (11) 0.0068 (8) −0.0005 (9) 0.0064 (8)
C6 0.0857 (16) 0.0934 (17) 0.0833 (15) −0.0174 (14) −0.0132 (14) 0.0307 (13)
C1 0.0460 (9) 0.0666 (10) 0.0850 (14) −0.0021 (8) −0.0040 (9) 0.0180 (10)
C15 0.0745 (13) 0.0697 (11) 0.0727 (12) 0.0158 (10) −0.0151 (10) 0.0056 (9)
C8 0.0880 (15) 0.0662 (11) 0.0691 (11) 0.0015 (11) −0.0152 (12) −0.0065 (9)
C2 0.0505 (9) 0.0676 (11) 0.0795 (13) 0.0061 (8) −0.0114 (9) −0.0047 (10)
C17 0.0876 (19) 0.0806 (16) 0.143 (3) −0.0012 (14) −0.038 (2) −0.0195 (18)
C7 0.107 (2) 0.0709 (13) 0.0845 (15) −0.0052 (13) −0.0216 (15) 0.0107 (11)

Geometric parameters (Å, º)

S1—C10 1.7439 (18) C5—C6 1.374 (5)
S1—C1 1.835 (2) C5—H5A 0.9300
N1—C10 1.368 (3) C14—C15 1.379 (4)
N1—C3 1.393 (3) C14—H14A 0.9300
N1—C2 1.475 (3) C16—C15 1.390 (3)
N2—C10 1.279 (3) C16—H16A 0.9300
N2—C9 1.387 (3) C6—C7 1.399 (5)
O1—C3 1.211 (3) C6—H6A 0.9300
C3—C4 1.454 (3) C1—C2 1.542 (3)
C9—C4 1.398 (3) C1—H1A 0.9800
C9—C8 1.406 (3) C15—H15A 0.9300
C12—C11 1.380 (3) C8—C7 1.371 (4)
C12—C13 1.388 (3) C8—H8A 0.9300
C12—H12A 0.9300 C2—C17 1.526 (3)
C11—C16 1.385 (3) C2—H2B 0.9800
C11—C1 1.511 (3) C17—H17A 0.9600
C4—C5 1.406 (3) C17—H17C 0.9600
C13—C14 1.361 (4) C17—H17D 0.9600
C13—H13A 0.9300 C7—H7A 0.9300
C10—S1—C1 93.18 (10) C11—C16—H16A 119.9
C10—N1—C3 121.33 (18) C15—C16—H16A 119.9
C10—N1—C2 116.71 (17) C5—C6—C7 120.3 (2)
C3—N1—C2 121.72 (18) C5—C6—H6A 119.9
C10—N2—C9 115.61 (16) C7—C6—H6A 119.9
O1—C3—N1 121.6 (2) C11—C1—C2 115.45 (17)
O1—C3—C4 124.9 (2) C11—C1—S1 112.12 (16)
N1—C3—C4 113.49 (18) C2—C1—S1 105.33 (14)
N2—C10—N1 127.10 (17) C11—C1—H1A 107.9
N2—C10—S1 121.59 (14) C2—C1—H1A 107.9
N1—C10—S1 111.31 (14) S1—C1—H1A 107.9
N2—C9—C4 122.34 (19) C14—C15—C16 120.2 (2)
N2—C9—C8 118.0 (2) C14—C15—H15A 119.9
C4—C9—C8 119.6 (2) C16—C15—H15A 119.9
C11—C12—C13 120.9 (2) C7—C8—C9 120.2 (3)
C11—C12—H12A 119.5 C7—C8—H8A 119.9
C13—C12—H12A 119.5 C9—C8—H8A 119.9
C12—C11—C16 118.68 (18) N1—C2—C17 110.36 (19)
C12—C11—C1 121.78 (18) N1—C2—C1 106.58 (17)
C16—C11—C1 119.52 (18) C17—C2—C1 113.2 (2)
C9—C4—C5 119.4 (2) N1—C2—H2B 108.9
C9—C4—C3 119.94 (18) C17—C2—H2B 108.9
C5—C4—C3 120.6 (2) C1—C2—H2B 108.9
C14—C13—C12 120.0 (2) C2—C17—H17A 109.5
C14—C13—H13A 120.0 C2—C17—H17C 109.5
C12—C13—H13A 120.0 H17A—C17—H17C 109.5
C6—C5—C4 120.2 (3) C2—C17—H17D 109.5
C6—C5—H5A 119.9 H17A—C17—H17D 109.5
C4—C5—H5A 119.9 H17C—C17—H17D 109.5
C13—C14—C15 120.0 (2) C8—C7—C6 120.3 (3)
C13—C14—H14A 120.0 C8—C7—H7A 119.8
C15—C14—H14A 120.0 C6—C7—H7A 119.8
C11—C16—C15 120.1 (2)
C10—N1—C3—O1 −179.4 (2) C3—C4—C5—C6 −177.7 (2)
C2—N1—C3—O1 6.4 (3) C12—C13—C14—C15 1.1 (4)
C10—N1—C3—C4 0.1 (3) C12—C11—C16—C15 1.8 (3)
C2—N1—C3—C4 −174.12 (17) C1—C11—C16—C15 −176.6 (2)
C9—N2—C10—N1 0.6 (3) C4—C5—C6—C7 1.6 (4)
C9—N2—C10—S1 −179.34 (13) C12—C11—C1—C2 −34.8 (3)
C3—N1—C10—N2 −2.2 (3) C16—C11—C1—C2 143.6 (2)
C2—N1—C10—N2 172.28 (18) C12—C11—C1—S1 85.8 (2)
C3—N1—C10—S1 177.70 (15) C16—C11—C1—S1 −95.81 (19)
C2—N1—C10—S1 −7.8 (2) C10—S1—C1—C11 −105.81 (15)
C1—S1—C10—N2 171.57 (16) C10—S1—C1—C2 20.52 (15)
C1—S1—C10—N1 −8.37 (15) C13—C14—C15—C16 −1.6 (4)
C10—N2—C9—C4 3.2 (3) C11—C16—C15—C14 0.1 (3)
C10—N2—C9—C8 −178.35 (18) N2—C9—C8—C7 −177.4 (2)
C13—C12—C11—C16 −2.4 (4) C4—C9—C8—C7 1.2 (3)
C13—C12—C11—C1 176.0 (2) C10—N1—C2—C17 −99.9 (3)
N2—C9—C4—C5 177.15 (19) C3—N1—C2—C17 74.6 (3)
C8—C9—C4—C5 −1.3 (3) C10—N1—C2—C1 23.4 (2)
N2—C9—C4—C3 −5.2 (3) C3—N1—C2—C1 −162.12 (17)
C8—C9—C4—C3 176.33 (19) C11—C1—C2—N1 97.6 (2)
O1—C3—C4—C9 −177.2 (2) S1—C1—C2—N1 −26.69 (19)
N1—C3—C4—C9 3.3 (3) C11—C1—C2—C17 −140.9 (2)
O1—C3—C4—C5 0.4 (4) S1—C1—C2—C17 94.8 (2)
N1—C3—C4—C5 −179.06 (19) C9—C8—C7—C6 0.3 (4)
C11—C12—C13—C14 0.9 (4) C5—C6—C7—C8 −1.7 (4)
C9—C4—C5—C6 0.0 (3)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg4 are the centroids of the C4–C9 and C11–C16 phenyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cg3i 0.98 2.91 3.824 (2) 155
C6—H6A···Cg4ii 0.93 2.81 3.637 (3) 146

Symmetry codes: (i) −x−1, y+3/2, −z+3/2; (ii) −x+3/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2145).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Al-Salahi, R., Geffken, D. & Bari, A. (2012). Acta Cryst. E68, o101. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Ghorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87–95. [DOI] [PubMed]
  7. Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010c). Eur. J. Med. Chem, 45, 3677–3684. [DOI] [PubMed]
  8. Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010b). Bioorg. Med. Chem. Lett., 20, 6316–6320. [DOI] [PubMed]
  9. Liu, B., Chen, X.-B., Yang, X.-H., Pan, D.-F. & Ma, J.-K. (2010). Acta Cryst. E66, o2225–o2226. [DOI] [PMC free article] [PubMed]
  10. Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200832X/nk2145sup1.cif

e-68-0o927-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200832X/nk2145Isup2.hkl

e-68-0o927-Isup2.hkl (126.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES