Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o934. doi: 10.1107/S1600536812008410

(E)-3-(2-Chloro­phen­yl)-2-[(2-formylphen­oxy)meth­yl]prop-2-ene­nitrile

N Manikandan a, S Murugavel b,*, D Kannan c, M Bakthadoss c,
PMCID: PMC3343916  PMID: 22589997

Abstract

In the title compound, C17H12ClNO2, the dihedral angle between the two benzene rings is 42.9 (1)°. There are no sgnificant inter­molecular inter­actions.

Related literature  

For background to the synthetic procedure, see: Bakthadoss & Murugan (2010). For related structures, see: Manikandan et al. (2012); Prasanna et al. (2011). graphic file with name e-68-0o934-scheme1.jpg

Experimental  

Crystal data  

  • C17H12ClNO2

  • M r = 297.73

  • Triclinic, Inline graphic

  • a = 7.5022 (4) Å

  • b = 7.8301 (4) Å

  • c = 13.2379 (8) Å

  • α = 75.470 (3)°

  • β = 84.696 (2)°

  • γ = 70.935 (2)°

  • V = 711.43 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.937, T max = 0.960

  • 14438 measured reflections

  • 3433 independent reflections

  • 2685 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.114

  • S = 1.04

  • 3433 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008410/bt5830sup1.cif

e-68-0o934-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008410/bt5830Isup2.hkl

e-68-0o934-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008410/bt5830Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The title compound is a stereodefined trisubstituted olefin, synthesized from the corresponding bromoderivative of Baylis–Hillman adduct with salicylaldehyde via simple SN2 reaction in good yields. This o-salicyladehyde derivative is an important precursor for many heterocyclic frameworks (Bakthadoss & Murugan, 2010).

The title compound comprises a benzaldehyde moiety connected to a chlorophenyl ring through a chain formed by a methoxy methyl and a propenenitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.

The dihedral angle between the two aromatic rings is 42.9 (1)°. The propenenitrile (N1/C17/C8–C11) plane forms dihedral angles of 12.4 (1)° and 36.0 (1)°, respectively, with the formyl phenyl and chloro phenyl rings. The Cl1 atom deviates from the plane of attached ring by 0.019 (1) Å. The bond length C9—C17 [1.443 (2) Å] is significantly shorter than the expected value for a C—C single bond because of conjugation effects (Prasanna et al., 2011). The carbonitrile side chain (C9—C17—N1) is almost linear, with the angle around the central C atom being 178.1 (2)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Manikandan et al., 2012; Prasanna et al., 2011).

Experimental

A solution of salicylaldehyde (1.0 mmol, 0.122 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 min at room temperature. To this solution, (E)-2-(bromomethyl)-3-(2-chlorophenyl)prop-2-enenitrile (1.2 mmol, 0.308 g) was added drop wise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to a crude product, which was purified through a pad of silica gel (100–200 mesh) using ethyl acetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (0.270 g, 90% yield). Recrystallization was carried out using ethyl acetate as solvent.

Refinement

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

Crystal data

C17H12ClNO2 Z = 2
Mr = 297.73 F(000) = 308
Triclinic, P1 Dx = 1.390 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5022 (4) Å Cell parameters from 3463 reflections
b = 7.8301 (4) Å θ = 2.8–28.1°
c = 13.2379 (8) Å µ = 0.27 mm1
α = 75.470 (3)° T = 293 K
β = 84.696 (2)° Block, colourless
γ = 70.935 (2)° 0.24 × 0.21 × 0.15 mm
V = 711.43 (7) Å3

Data collection

Bruker APEXII CCD diffractometer 3433 independent reflections
Radiation source: fine-focus sealed tube 2685 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 10.0 pixels mm-1 θmax = 28.1°, θmin = 2.8°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −10→10
Tmin = 0.937, Tmax = 0.960 l = −17→17
14438 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.159P] where P = (Fo2 + 2Fc2)/3
3433 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.31341 (8) 0.23140 (7) 0.01456 (3) 0.07011 (17)
N1 0.1141 (2) −0.1357 (2) 0.40658 (12) 0.0660 (4)
O1 0.3876 (2) −0.21291 (18) 0.75288 (10) 0.0765 (4)
O2 0.28615 (15) 0.15782 (13) 0.48411 (7) 0.0436 (2)
C1 0.32059 (19) 0.22280 (18) 0.56458 (10) 0.0364 (3)
C2 0.3173 (2) 0.4030 (2) 0.55536 (12) 0.0471 (4)
H2 0.2830 0.4913 0.4928 0.057*
C3 0.3655 (3) 0.4509 (2) 0.64002 (14) 0.0562 (4)
H3 0.3639 0.5724 0.6336 0.067*
C4 0.4160 (3) 0.3238 (2) 0.73390 (13) 0.0559 (4)
H4 0.4513 0.3578 0.7896 0.067*
C5 0.4132 (2) 0.1464 (2) 0.74357 (11) 0.0474 (4)
H5 0.4442 0.0603 0.8071 0.057*
C6 0.36463 (19) 0.09286 (18) 0.66019 (10) 0.0377 (3)
C7 0.3555 (2) −0.0949 (2) 0.67304 (12) 0.0479 (4)
H7 0.3225 −0.1251 0.6153 0.057*
C8 0.1837 (2) 0.2928 (2) 0.39872 (11) 0.0428 (3)
H8A 0.2576 0.3715 0.3627 0.051*
H8B 0.0670 0.3705 0.4233 0.051*
C9 0.1425 (2) 0.1907 (2) 0.32654 (11) 0.0407 (3)
C10 0.1257 (2) 0.2525 (2) 0.22304 (11) 0.0453 (3)
H10 0.0988 0.1754 0.1876 0.054*
C11 0.1448 (2) 0.4273 (2) 0.15926 (11) 0.0450 (3)
C12 0.2291 (2) 0.4332 (2) 0.05996 (12) 0.0505 (4)
C13 0.2510 (3) 0.5949 (3) −0.00219 (14) 0.0639 (5)
H13 0.3080 0.5953 −0.0676 0.077*
C14 0.1887 (3) 0.7543 (3) 0.03273 (17) 0.0725 (6)
H14 0.2040 0.8635 −0.0090 0.087*
C15 0.1029 (3) 0.7550 (3) 0.12961 (16) 0.0693 (5)
H15 0.0605 0.8643 0.1528 0.083*
C16 0.0804 (3) 0.5936 (2) 0.19183 (13) 0.0562 (4)
H16 0.0212 0.5955 0.2566 0.067*
C17 0.1252 (2) 0.0091 (2) 0.37263 (11) 0.0463 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0911 (4) 0.0811 (3) 0.0395 (2) −0.0294 (3) 0.0038 (2) −0.0151 (2)
N1 0.0812 (11) 0.0554 (9) 0.0620 (9) −0.0321 (8) 0.0090 (8) −0.0041 (7)
O1 0.1249 (12) 0.0518 (7) 0.0519 (7) −0.0394 (8) −0.0187 (7) 0.0113 (6)
O2 0.0599 (6) 0.0349 (5) 0.0322 (5) −0.0102 (4) −0.0091 (4) −0.0044 (4)
C1 0.0398 (7) 0.0358 (7) 0.0329 (6) −0.0113 (5) 0.0013 (5) −0.0083 (5)
C2 0.0612 (9) 0.0358 (7) 0.0424 (8) −0.0170 (7) 0.0022 (7) −0.0043 (6)
C3 0.0757 (11) 0.0435 (8) 0.0598 (10) −0.0286 (8) 0.0056 (8) −0.0197 (7)
C4 0.0689 (11) 0.0625 (10) 0.0472 (9) −0.0272 (8) 0.0005 (7) −0.0242 (8)
C5 0.0562 (9) 0.0514 (9) 0.0344 (7) −0.0170 (7) −0.0019 (6) −0.0089 (6)
C6 0.0424 (7) 0.0352 (7) 0.0341 (7) −0.0121 (6) 0.0002 (5) −0.0062 (5)
C7 0.0610 (9) 0.0390 (8) 0.0421 (8) −0.0176 (7) −0.0056 (7) −0.0025 (6)
C8 0.0504 (8) 0.0388 (7) 0.0339 (7) −0.0099 (6) −0.0036 (6) −0.0037 (5)
C9 0.0417 (7) 0.0429 (7) 0.0354 (7) −0.0138 (6) 0.0005 (5) −0.0050 (6)
C10 0.0520 (8) 0.0507 (8) 0.0358 (7) −0.0215 (7) −0.0031 (6) −0.0069 (6)
C11 0.0469 (8) 0.0512 (9) 0.0339 (7) −0.0172 (7) −0.0113 (6) 0.0017 (6)
C12 0.0520 (9) 0.0601 (10) 0.0358 (7) −0.0200 (7) −0.0105 (6) 0.0020 (7)
C13 0.0614 (10) 0.0752 (13) 0.0447 (9) −0.0263 (9) −0.0070 (8) 0.0132 (8)
C14 0.0733 (13) 0.0589 (12) 0.0736 (13) −0.0287 (10) −0.0198 (10) 0.0222 (10)
C15 0.0788 (13) 0.0479 (10) 0.0730 (13) −0.0153 (9) −0.0219 (10) 0.0017 (9)
C16 0.0621 (10) 0.0509 (9) 0.0478 (9) −0.0124 (8) −0.0107 (7) −0.0013 (7)
C17 0.0510 (8) 0.0507 (9) 0.0366 (7) −0.0191 (7) 0.0028 (6) −0.0062 (6)

Geometric parameters (Å, º)

Cl1—C12 1.7353 (18) C8—C9 1.499 (2)
N1—C17 1.137 (2) C8—H8A 0.9700
O1—C7 1.2004 (18) C8—H8B 0.9700
O2—C1 1.3672 (16) C9—C10 1.3367 (19)
O2—C8 1.4199 (16) C9—C17 1.443 (2)
C1—C2 1.378 (2) C10—C11 1.460 (2)
C1—C6 1.3992 (18) C10—H10 0.9300
C2—C3 1.379 (2) C11—C16 1.395 (2)
C2—H2 0.9300 C11—C12 1.402 (2)
C3—C4 1.378 (2) C12—C13 1.376 (2)
C3—H3 0.9300 C13—C14 1.364 (3)
C4—C5 1.369 (2) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.381 (3)
C5—C6 1.390 (2) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.377 (3)
C6—C7 1.460 (2) C15—H15 0.9300
C7—H7 0.9300 C16—H16 0.9300
C1—O2—C8 116.56 (10) H8A—C8—H8B 108.5
O2—C1—C2 123.98 (12) C10—C9—C17 117.74 (14)
O2—C1—C6 115.96 (11) C10—C9—C8 125.17 (13)
C2—C1—C6 120.05 (13) C17—C9—C8 117.06 (12)
C1—C2—C3 119.14 (14) C9—C10—C11 127.43 (14)
C1—C2—H2 120.4 C9—C10—H10 116.3
C3—C2—H2 120.4 C11—C10—H10 116.3
C4—C3—C2 121.89 (14) C16—C11—C12 117.11 (14)
C4—C3—H3 119.1 C16—C11—C10 122.99 (14)
C2—C3—H3 119.1 C12—C11—C10 119.90 (14)
C5—C4—C3 118.66 (15) C13—C12—C11 121.65 (17)
C5—C4—H4 120.7 C13—C12—Cl1 118.70 (14)
C3—C4—H4 120.7 C11—C12—Cl1 119.63 (12)
C4—C5—C6 121.20 (14) C14—C13—C12 119.65 (18)
C4—C5—H5 119.4 C14—C13—H13 120.2
C6—C5—H5 119.4 C12—C13—H13 120.2
C5—C6—C1 118.97 (13) C13—C14—C15 120.53 (17)
C5—C6—C7 120.44 (13) C13—C14—H14 119.7
C1—C6—C7 120.58 (12) C15—C14—H14 119.7
O1—C7—C6 124.58 (15) C16—C15—C14 120.0 (2)
O1—C7—H7 117.7 C16—C15—H15 120.0
C6—C7—H7 117.7 C14—C15—H15 120.0
O2—C8—C9 107.51 (11) C15—C16—C11 121.09 (18)
O2—C8—H8A 110.2 C15—C16—H16 119.5
C9—C8—H8A 110.2 C11—C16—H16 119.5
O2—C8—H8B 110.2 N1—C17—C9 178.10 (17)
C9—C8—H8B 110.2
C8—O2—C1—C2 −21.16 (19) C17—C9—C10—C11 −177.54 (15)
C8—O2—C1—C6 160.05 (12) C8—C9—C10—C11 0.5 (3)
O2—C1—C2—C3 −176.06 (14) C9—C10—C11—C16 −37.5 (2)
C6—C1—C2—C3 2.7 (2) C9—C10—C11—C12 143.27 (17)
C1—C2—C3—C4 −0.3 (3) C16—C11—C12—C13 1.2 (2)
C2—C3—C4—C5 −1.7 (3) C10—C11—C12—C13 −179.48 (15)
C3—C4—C5—C6 1.4 (3) C16—C11—C12—Cl1 179.72 (12)
C4—C5—C6—C1 0.9 (2) C10—C11—C12—Cl1 −1.0 (2)
C4—C5—C6—C7 −177.70 (15) C11—C12—C13—C14 −0.4 (3)
O2—C1—C6—C5 175.89 (12) Cl1—C12—C13—C14 −178.89 (14)
C2—C1—C6—C5 −2.9 (2) C12—C13—C14—C15 −0.3 (3)
O2—C1—C6—C7 −5.54 (19) C13—C14—C15—C16 0.2 (3)
C2—C1—C6—C7 175.62 (13) C14—C15—C16—C11 0.7 (3)
C5—C6—C7—O1 0.0 (3) C12—C11—C16—C15 −1.4 (2)
C1—C6—C7—O1 −178.53 (16) C10—C11—C16—C15 179.34 (15)
C1—O2—C8—C9 −173.38 (11) C10—C9—C17—N1 36 (6)
O2—C8—C9—C10 −149.36 (14) C8—C9—C17—N1 −142 (6)
O2—C8—C9—C17 28.70 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5830).

References

  1. Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Manikandan, N., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o28. [DOI] [PMC free article] [PubMed]
  5. Prasanna, C. M. S., Sethusankar, K., Rajesh, R. & Raghunathan, R. (2011). Acta Cryst. E67, o2176. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008410/bt5830sup1.cif

e-68-0o934-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008410/bt5830Isup2.hkl

e-68-0o934-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008410/bt5830Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES