Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o947. doi: 10.1107/S1600536812008409

5-Cyclo­hexyl-2-methyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3343928  PMID: 22590009

Abstract

In the title compound, C22H24O2S, the cyclo­hexyl ring adopts a chair conformation. The 4-methyl­phenyl ring makes a dihedral angle of 81.60 (5)° with the mean plane [r.m.s. deviation = 0.004 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and weak π–π inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.545 (2) Å, inter­planar distance = 3.489 (2) Å and slippage = 0.628 (2) Å.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012).graphic file with name e-68-0o947-scheme1.jpg

Experimental  

Crystal data  

  • C22H24O2S

  • M r = 352.47

  • Monoclinic, Inline graphic

  • a = 16.6086 (4) Å

  • b = 8.8344 (2) Å

  • c = 13.0330 (3) Å

  • β = 104.064 (1)°

  • V = 1854.97 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.37 × 0.25 × 0.23 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.934, T max = 0.958

  • 16901 measured reflections

  • 4265 independent reflections

  • 3545 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.128

  • S = 1.06

  • 4265 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008409/gk2461sup1.cif

e-68-0o947-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008409/gk2461Isup2.hkl

e-68-0o947-Isup2.hkl (209KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008409/gk2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.95 2.48 3.140 (2) 127

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl (Choi et al., 2011) or 3-(4-bromophenylsulfinyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofurn fragment is 81.60 (5)°. The crystal packing is stabilized by weak intermolecular C–H···O hydrogen bonds (Fig. 2 & Table 1). The crystal packing (Fig. 2) also exhibits weak slipped π–π interactions between the furan rings of adjacent molecules, with a Cg···Cgii distance of 3.545 (2) Å and an interplanar distance of3.489 (2) Å resulting in a slippage of 0.628 (2) Å (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Experimental

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (302 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 423-424 K; Rf = 0.52 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C–H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [ Symmetry codes: (i) x, - y +1/2, z - 1/2; (ii) - x, - y + 1, - z + 1; (iii) x, - y + 1/2, z + 1/2.]

Crystal data

C22H24O2S F(000) = 752
Mr = 352.47 Dx = 1.262 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6233 reflections
a = 16.6086 (4) Å θ = 2.5–27.5°
b = 8.8344 (2) Å µ = 0.19 mm1
c = 13.0330 (3) Å T = 173 K
β = 104.064 (1)° Block, colourless
V = 1854.97 (7) Å3 0.37 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4265 independent reflections
Radiation source: rotating anode 3545 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.028
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 1.3°
φ and ω scans h = −21→20
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −9→11
Tmin = 0.934, Tmax = 0.958 l = −16→16
16901 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.128 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.6552P] where P = (Fo2 + 2Fc2)/3
4265 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13691 (3) 0.27171 (5) 0.44504 (3) 0.03485 (14)
O1 0.03313 (7) 0.67453 (14) 0.40263 (9) 0.0342 (3)
O2 0.15932 (9) 0.21178 (14) 0.55463 (10) 0.0447 (3)
C1 0.10429 (9) 0.45997 (18) 0.45194 (11) 0.0287 (3)
C2 0.13345 (9) 0.57018 (17) 0.53478 (11) 0.0272 (3)
C3 0.19160 (9) 0.57274 (18) 0.63229 (11) 0.0280 (3)
H3 0.2236 0.4854 0.6577 0.034*
C4 0.20187 (9) 0.70563 (18) 0.69176 (12) 0.0298 (3)
C5 0.15399 (10) 0.8332 (2) 0.65225 (14) 0.0360 (4)
H5 0.1617 0.9233 0.6932 0.043*
C6 0.09584 (10) 0.8331 (2) 0.55585 (14) 0.0369 (4)
H6 0.0639 0.9203 0.5299 0.044*
C7 0.08702 (9) 0.69938 (18) 0.49981 (12) 0.0302 (3)
C8 0.04472 (9) 0.52723 (19) 0.37593 (12) 0.0315 (3)
C9 0.26367 (10) 0.71423 (18) 0.79833 (12) 0.0323 (3)
H9 0.2620 0.8199 0.8253 0.039*
C10 0.35226 (10) 0.6834 (3) 0.79134 (14) 0.0493 (5)
H10A 0.3679 0.7570 0.7423 0.059*
H10B 0.3555 0.5806 0.7622 0.059*
C11 0.41355 (11) 0.6952 (3) 0.89943 (15) 0.0522 (5)
H11A 0.4699 0.6687 0.8924 0.063*
H11B 0.4149 0.8008 0.9251 0.063*
C12 0.38954 (12) 0.5904 (2) 0.97924 (15) 0.0497 (5)
H12A 0.3949 0.4840 0.9580 0.060*
H12B 0.4280 0.6060 1.0495 0.060*
C13 0.30210 (13) 0.6187 (3) 0.98700 (14) 0.0520 (5)
H13A 0.2985 0.7207 1.0171 0.062*
H13B 0.2870 0.5435 1.0355 0.062*
C14 0.24081 (11) 0.6080 (2) 0.87911 (13) 0.0437 (4)
H14A 0.1845 0.6334 0.8867 0.052*
H14B 0.2396 0.5026 0.8530 0.052*
C15 −0.00704 (11) 0.4748 (2) 0.27292 (12) 0.0409 (4)
H15A 0.0108 0.5256 0.2154 0.061*
H15B −0.0654 0.4989 0.2684 0.061*
H15C −0.0008 0.3651 0.2668 0.061*
C16 0.23179 (11) 0.31164 (18) 0.40764 (12) 0.0326 (3)
C17 0.22949 (12) 0.31441 (19) 0.30040 (12) 0.0373 (4)
H17 0.1788 0.2968 0.2493 0.045*
C18 0.30144 (13) 0.3429 (2) 0.26885 (13) 0.0431 (4)
H18 0.2997 0.3467 0.1955 0.052*
C19 0.37674 (12) 0.3662 (2) 0.34233 (15) 0.0454 (4)
C20 0.37743 (12) 0.3619 (2) 0.44926 (15) 0.0463 (4)
H20 0.4282 0.3778 0.5005 0.056*
C21 0.30568 (11) 0.3349 (2) 0.48239 (13) 0.0398 (4)
H21 0.3071 0.3323 0.5557 0.048*
C22 0.45564 (15) 0.3941 (3) 0.3071 (2) 0.0705 (7)
H22A 0.5017 0.4099 0.3693 0.106*
H22B 0.4489 0.4843 0.2620 0.106*
H22C 0.4675 0.3064 0.2672 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0461 (3) 0.0245 (2) 0.0314 (2) −0.00455 (17) 0.00458 (16) −0.00145 (14)
O1 0.0289 (5) 0.0360 (6) 0.0353 (6) 0.0024 (5) 0.0031 (4) 0.0061 (5)
O2 0.0633 (8) 0.0338 (7) 0.0361 (6) 0.0014 (6) 0.0104 (6) 0.0089 (5)
C1 0.0304 (7) 0.0267 (8) 0.0276 (7) −0.0033 (6) 0.0042 (5) 0.0009 (6)
C2 0.0270 (7) 0.0236 (7) 0.0314 (7) −0.0021 (6) 0.0080 (6) 0.0018 (6)
C3 0.0284 (7) 0.0230 (7) 0.0314 (7) 0.0005 (6) 0.0053 (6) 0.0007 (6)
C4 0.0264 (7) 0.0278 (8) 0.0347 (7) −0.0033 (6) 0.0067 (6) −0.0024 (6)
C5 0.0351 (8) 0.0258 (8) 0.0471 (9) 0.0009 (7) 0.0099 (7) −0.0061 (7)
C6 0.0334 (8) 0.0275 (8) 0.0486 (9) 0.0079 (7) 0.0080 (7) 0.0026 (7)
C7 0.0255 (7) 0.0303 (8) 0.0343 (7) 0.0008 (6) 0.0064 (6) 0.0050 (6)
C8 0.0288 (7) 0.0343 (9) 0.0307 (7) −0.0048 (6) 0.0063 (6) 0.0038 (6)
C9 0.0332 (8) 0.0261 (8) 0.0355 (8) −0.0032 (6) 0.0047 (6) −0.0063 (6)
C10 0.0301 (9) 0.0803 (15) 0.0372 (9) −0.0076 (9) 0.0075 (7) −0.0024 (9)
C11 0.0316 (9) 0.0774 (16) 0.0443 (10) −0.0060 (9) 0.0027 (7) −0.0053 (10)
C12 0.0531 (11) 0.0478 (12) 0.0410 (9) 0.0060 (9) −0.0026 (8) −0.0034 (8)
C13 0.0555 (12) 0.0668 (15) 0.0329 (9) −0.0076 (10) 0.0092 (8) −0.0018 (9)
C14 0.0402 (9) 0.0577 (12) 0.0342 (8) −0.0097 (8) 0.0113 (7) −0.0046 (8)
C15 0.0354 (8) 0.0531 (11) 0.0302 (8) −0.0069 (8) 0.0001 (6) 0.0045 (7)
C16 0.0446 (9) 0.0230 (8) 0.0289 (7) 0.0044 (7) 0.0064 (6) −0.0006 (6)
C17 0.0531 (10) 0.0277 (8) 0.0279 (7) 0.0052 (7) 0.0035 (7) −0.0029 (6)
C18 0.0641 (12) 0.0358 (10) 0.0314 (8) 0.0111 (9) 0.0158 (8) −0.0008 (7)
C19 0.0499 (10) 0.0419 (11) 0.0472 (10) 0.0136 (9) 0.0174 (8) 0.0010 (8)
C20 0.0422 (10) 0.0512 (12) 0.0418 (9) 0.0091 (9) 0.0033 (7) 0.0013 (8)
C21 0.0468 (10) 0.0422 (10) 0.0274 (7) 0.0066 (8) 0.0030 (7) 0.0011 (7)
C22 0.0610 (14) 0.088 (2) 0.0710 (15) 0.0125 (13) 0.0325 (12) 0.0018 (13)

Geometric parameters (Å, º)

S1—O2 1.4834 (12) C11—H11B 0.9900
S1—C1 1.7582 (16) C12—C13 1.501 (3)
S1—C16 1.7940 (18) C12—H12A 0.9900
O1—C8 1.373 (2) C12—H12B 0.9900
O1—C7 1.3792 (19) C13—C14 1.525 (2)
C1—C8 1.355 (2) C13—H13A 0.9900
C1—C2 1.447 (2) C13—H13B 0.9900
C2—C7 1.391 (2) C14—H14A 0.9900
C2—C3 1.397 (2) C14—H14B 0.9900
C3—C4 1.394 (2) C15—H15A 0.9800
C3—H3 0.9500 C15—H15B 0.9800
C4—C5 1.403 (2) C15—H15C 0.9800
C4—C9 1.515 (2) C16—C21 1.384 (2)
C5—C6 1.386 (2) C16—C17 1.389 (2)
C5—H5 0.9500 C17—C18 1.378 (3)
C6—C7 1.378 (2) C17—H17 0.9500
C6—H6 0.9500 C18—C19 1.393 (3)
C8—C15 1.482 (2) C18—H18 0.9500
C9—C10 1.521 (2) C19—C20 1.391 (3)
C9—C14 1.526 (2) C19—C22 1.510 (3)
C9—H9 1.0000 C20—C21 1.383 (3)
C10—C11 1.528 (2) C20—H20 0.9500
C10—H10A 0.9900 C21—H21 0.9500
C10—H10B 0.9900 C22—H22A 0.9800
C11—C12 1.516 (3) C22—H22B 0.9800
C11—H11A 0.9900 C22—H22C 0.9800
O2—S1—C1 107.26 (7) C13—C12—H12A 109.4
O2—S1—C16 107.48 (8) C11—C12—H12A 109.4
C1—S1—C16 97.46 (7) C13—C12—H12B 109.4
C8—O1—C7 106.50 (12) C11—C12—H12B 109.4
C8—C1—C2 107.63 (14) H12A—C12—H12B 108.0
C8—C1—S1 123.82 (12) C12—C13—C14 111.56 (15)
C2—C1—S1 128.54 (11) C12—C13—H13A 109.3
C7—C2—C3 119.37 (14) C14—C13—H13A 109.3
C7—C2—C1 104.43 (13) C12—C13—H13B 109.3
C3—C2—C1 136.19 (15) C14—C13—H13B 109.3
C4—C3—C2 118.92 (14) H13A—C13—H13B 108.0
C4—C3—H3 120.5 C13—C14—C9 112.06 (15)
C2—C3—H3 120.5 C13—C14—H14A 109.2
C3—C4—C5 119.37 (15) C9—C14—H14A 109.2
C3—C4—C9 121.06 (14) C13—C14—H14B 109.2
C5—C4—C9 119.57 (14) C9—C14—H14B 109.2
C6—C5—C4 122.67 (16) H14A—C14—H14B 107.9
C6—C5—H5 118.7 C8—C15—H15A 109.5
C4—C5—H5 118.7 C8—C15—H15B 109.5
C7—C6—C5 116.24 (15) H15A—C15—H15B 109.5
C7—C6—H6 121.9 C8—C15—H15C 109.5
C5—C6—H6 121.9 H15A—C15—H15C 109.5
C6—C7—O1 125.79 (14) H15B—C15—H15C 109.5
C6—C7—C2 123.42 (15) C21—C16—C17 120.55 (16)
O1—C7—C2 110.78 (14) C21—C16—S1 121.67 (12)
C1—C8—O1 110.65 (13) C17—C16—S1 117.76 (13)
C1—C8—C15 133.23 (17) C18—C17—C16 119.32 (16)
O1—C8—C15 116.11 (14) C18—C17—H17 120.3
C4—C9—C10 112.70 (13) C16—C17—H17 120.3
C4—C9—C14 112.02 (13) C17—C18—C19 121.36 (16)
C10—C9—C14 109.74 (15) C17—C18—H18 119.3
C4—C9—H9 107.4 C19—C18—H18 119.3
C10—C9—H9 107.4 C20—C19—C18 118.16 (18)
C14—C9—H9 107.4 C20—C19—C22 120.8 (2)
C9—C10—C11 111.72 (15) C18—C19—C22 121.02 (18)
C9—C10—H10A 109.3 C21—C20—C19 121.29 (17)
C11—C10—H10A 109.3 C21—C20—H20 119.4
C9—C10—H10B 109.3 C19—C20—H20 119.4
C11—C10—H10B 109.3 C20—C21—C16 119.31 (15)
H10A—C10—H10B 107.9 C20—C21—H21 120.3
C12—C11—C10 111.32 (17) C16—C21—H21 120.3
C12—C11—H11A 109.4 C19—C22—H22A 109.5
C10—C11—H11A 109.4 C19—C22—H22B 109.5
C12—C11—H11B 109.4 H22A—C22—H22B 109.5
C10—C11—H11B 109.4 C19—C22—H22C 109.5
H11A—C11—H11B 108.0 H22A—C22—H22C 109.5
C13—C12—C11 111.39 (17) H22B—C22—H22C 109.5
O2—S1—C1—C8 −146.67 (14) C7—O1—C8—C15 −179.73 (13)
C16—S1—C1—C8 102.36 (14) C3—C4—C9—C10 60.1 (2)
O2—S1—C1—C2 33.43 (16) C5—C4—C9—C10 −120.06 (18)
C16—S1—C1—C2 −77.54 (14) C3—C4—C9—C14 −64.24 (19)
C8—C1—C2—C7 −0.07 (16) C5—C4—C9—C14 115.60 (17)
S1—C1—C2—C7 179.84 (12) C4—C9—C10—C11 179.09 (17)
C8—C1—C2—C3 179.21 (16) C14—C9—C10—C11 −55.3 (2)
S1—C1—C2—C3 −0.9 (3) C9—C10—C11—C12 55.9 (3)
C7—C2—C3—C4 −0.4 (2) C10—C11—C12—C13 −55.0 (2)
C1—C2—C3—C4 −179.61 (16) C11—C12—C13—C14 54.7 (2)
C2—C3—C4—C5 −0.2 (2) C12—C13—C14—C9 −55.4 (2)
C2—C3—C4—C9 179.61 (13) C4—C9—C14—C13 −178.94 (15)
C3—C4—C5—C6 0.4 (2) C10—C9—C14—C13 55.1 (2)
C9—C4—C5—C6 −179.46 (15) O2—S1—C16—C21 −21.67 (17)
C4—C5—C6—C7 0.1 (3) C1—S1—C16—C21 89.13 (15)
C5—C6—C7—O1 −179.92 (14) O2—S1—C16—C17 156.54 (13)
C5—C6—C7—C2 −0.8 (2) C1—S1—C16—C17 −92.67 (14)
C8—O1—C7—C6 179.88 (15) C21—C16—C17—C18 −1.0 (3)
C8—O1—C7—C2 0.67 (16) S1—C16—C17—C18 −179.22 (13)
C3—C2—C7—C6 1.0 (2) C16—C17—C18—C19 1.2 (3)
C1—C2—C7—C6 −179.60 (15) C17—C18—C19—C20 −0.8 (3)
C3—C2—C7—O1 −179.80 (12) C17—C18—C19—C22 178.7 (2)
C1—C2—C7—O1 −0.37 (16) C18—C19—C20—C21 0.2 (3)
C2—C1—C8—O1 0.49 (17) C22—C19—C20—C21 −179.3 (2)
S1—C1—C8—O1 −179.43 (10) C19—C20—C21—C16 0.0 (3)
C2—C1—C8—C15 179.27 (16) C17—C16—C21—C20 0.4 (3)
S1—C1—C8—C15 −0.6 (3) S1—C16—C21—C20 178.54 (14)
C7—O1—C8—C1 −0.72 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17—H17···O2i 0.95 2.48 3.140 (2) 127

Symmetry code: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2461).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o205. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008409/gk2461sup1.cif

e-68-0o947-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008409/gk2461Isup2.hkl

e-68-0o947-Isup2.hkl (209KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008409/gk2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES