Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o948. doi: 10.1107/S1600536812007477

(R)-1,1′-Binaphthalene-2,2′-diol–(Z)-N-ethyl­ideneethanamine N-oxide (1/1)

Bo Shao a, Hai-Bin Wang b,*
PMCID: PMC3343929  PMID: 22590010

Abstract

In the title compound, C4H9NO·C20H14O2, the dihedral angle between the naphthalene ring systems of the binaphthalene­diol mol­ecule is 77.53 (14)°. In the crystal, the two components are linked by O—H⋯O hydrogen bonds, forming a zigzag chain along the c axis.

Related literature  

For applications of 2,2′-dihy­droxy-1,1′-dinaphthalene in asymmetric synthesis, see: Noyori et al. (1984); Reeder et al. (1994); Toda et al. (1989); Zhang & Schuster (1994). For related literature on oxidation of hydroxyl­amines to nitro­nes, see: Cicchi et al. (2001); Engel et al. (1997); Liu et al. (2004).graphic file with name e-68-0o948-scheme1.jpg

Experimental  

Crystal data  

  • C4H9NO·C20H14O2

  • M r = 373.43

  • Trigonal, Inline graphic

  • a = 8.9579 (6) Å

  • c = 21.187 (3) Å

  • V = 1472.4 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.31 × 0.22 × 0.18 mm

Data collection  

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.964, T max = 0.977

  • 7771 measured reflections

  • 1732 independent reflections

  • 1662 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.115

  • S = 1.19

  • 1732 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007477/is5033sup1.cif

e-68-0o948-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007477/is5033Isup2.hkl

e-68-0o948-Isup2.hkl (83.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 1.90 2.706 (5) 167
O2—H2⋯O3i 0.82 1.96 2.763 (5) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mr X.-J. Ma for preparing the sample, and Mr X.-J. Ma and Mr H.-Y. Li for collecting the diffraction data.

supplementary crystallographic information

Comment

2,2'-Dihydroxy-1,1'-dinaphthalene (binaphthol) is an important chemical as a precursor for catalysis in asymmetric synthesis, as a chiral host for molecular recognition and enantiomer separation and also as intermediates for the synthesis of chiral materials (Noyori et al., 1984; Toda et al., 1989; Reeder et al., 1994; Zhang & Schuster, 1994). N,N-diethylhydroxylamine is easily oxidized to form E and Z type of N-ethylideneethanamine N-oxide (ELDEA) (Engel et al., 1997; Liu et al., 2004; Cicchi et al., 2001). In this study, only the Z type of ELDEA is trapped by the (R)-binaphthol to form the title complex, (I) (Scheme 1 and Fig. 1).

The asymmetric unit comprises a ELDEA (Z type) molecule and a (R)-binaphthol molecule, which are linked by an intermolecular O—H···O hydrogen bond (Table 1). The two naphthyl groups are almost perpendicular to each other with a dihedral angle being 77.53 (14)°. The N1—O3 length [1.313 (5) Å] of ELDEA is characteristic of the N—O single bond, while the N1═C22 bond [1.265 (7) Å] is a double bond. Because of the existence of N1═C22 double bond, the O3/N1/C21/C22/C24 plane is almost planar. The ELDEA is connected to two H atoms from different binaphthol molecules through O—H···O hydrogen bonds (Fig. 2 and Table 1), forming infinite chains running along the c axis.

Experimental

The (R)-1,1'-bi-2-naphthol (2.9 g) and N,N-diethylhydroxylamine (0.9 g) were mixed and dissolved in sufficient ethanol 30 ml by heating to a temperature of 353 K where a clear solution was resulted, then refluxed for 5 h. The materials of experiment were exposed in air. Single crystals of (I) (2.7 g) were formed form an ethanol solution by gradual evaporation for two weeks at room temperature.

Refinement

All H atoms were placed in calculated positions and allowed to ride on their parent atoms, with O—H = 0.82 Å, and C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene), and with Uiso(H) = 1.2 or 1.5Ueq of the parent atom. In the absence of significant anomalous scattering, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom-labeling and displacement ellipsoids drawn at the 40% probability level. The hydrogen bond is illustrated as a dashed line.

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound, viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C4H9NO·C20H14O2 Dx = 1.263 Mg m3
Mr = 373.43 Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31 Cell parameters from 1360 reflections
Hall symbol: P 31 θ = 2.4–16.6°
a = 8.9579 (6) Å µ = 0.08 mm1
c = 21.187 (3) Å T = 273 K
V = 1472.4 (2) Å3 Prism, colorless
Z = 3 0.31 × 0.22 × 0.18 mm
F(000) = 594.0

Data collection

Bruker APEX area-detector diffractometer 1732 independent reflections
Radiation source: fine-focus sealed tube 1662 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scan θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→9
Tmin = 0.964, Tmax = 0.977 k = −7→10
7771 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.4671P] where P = (Fo2 + 2Fc2)/3
1732 reflections (Δ/σ)max < 0.001
257 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.26 e Å3

Special details

Experimental. The IR (KBr pellet) spectrum of (I) showed bands: 3069, 1624, 1583, 1504, 1433, 1338, 1275, 1241, 1177, 1142, 1093, 1012, 979, 965, 928, 867, 820, 753, 624, 581, 492, 442 and 424 cm-1.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6567 (4) 0.7994 (4) 0.76094 (13) 0.0418 (7)
H1 0.5835 0.7851 0.7872 0.063*
O2 0.5514 (4) 0.5899 (4) 0.59216 (14) 0.0500 (8)
H2 0.5018 0.5977 0.5609 0.075*
O3 0.3797 (4) 0.7314 (5) 0.83262 (16) 0.0582 (9)
N1 0.2490 (6) 0.5834 (6) 0.8144 (2) 0.0643 (12)
C1 0.7392 (4) 0.6275 (4) 0.70313 (16) 0.0255 (7)
C2 0.6670 (5) 0.6537 (5) 0.75628 (16) 0.0308 (8)
C3 0.6065 (5) 0.5327 (5) 0.80628 (17) 0.0365 (9)
H3A 0.5573 0.5521 0.8417 0.044*
C4 0.6198 (5) 0.3880 (5) 0.80293 (17) 0.0356 (9)
H4 0.5799 0.3100 0.8363 0.043*
C5 0.6929 (5) 0.3548 (5) 0.74984 (19) 0.0344 (9)
C6 0.7057 (6) 0.2039 (6) 0.7449 (2) 0.0472 (11)
H6 0.6660 0.1247 0.7778 0.057*
C7 0.7742 (7) 0.1731 (6) 0.6935 (2) 0.0551 (12)
H7 0.7819 0.0735 0.6911 0.066*
C8 0.8336 (7) 0.2911 (6) 0.6437 (2) 0.0510 (12)
H8 0.8796 0.2686 0.6080 0.061*
C9 0.8253 (5) 0.4385 (5) 0.64668 (18) 0.0370 (9)
H9 0.8674 0.5161 0.6132 0.044*
C10 0.7537 (4) 0.4758 (5) 0.69961 (17) 0.0292 (8)
C11 0.8048 (5) 0.7566 (4) 0.65051 (16) 0.0266 (8)
C12 0.7106 (5) 0.7323 (5) 0.59651 (17) 0.0323 (9)
C13 0.7759 (5) 0.8506 (5) 0.54687 (18) 0.0411 (10)
H13 0.7108 0.8299 0.5104 0.049*
C14 0.9330 (5) 0.9954 (5) 0.55105 (18) 0.0399 (10)
H14 0.9747 1.0715 0.5172 0.048*
C15 1.0329 (5) 1.0315 (5) 0.60593 (19) 0.0342 (9)
C16 1.1919 (6) 1.1874 (6) 0.6136 (2) 0.0464 (11)
H16 1.2330 1.2674 0.5810 0.056*
C17 1.2848 (6) 1.2220 (6) 0.6673 (2) 0.0562 (13)
H17 1.3878 1.3256 0.6718 0.067*
C18 1.2245 (6) 1.1009 (6) 0.7159 (2) 0.0579 (13)
H18 1.2897 1.1232 0.7525 0.069*
C19 1.0714 (5) 0.9500 (6) 0.71080 (19) 0.0413 (10)
H19 1.0337 0.8720 0.7441 0.050*
C20 0.9695 (5) 0.9104 (5) 0.65601 (17) 0.0288 (8)
C21 0.2757 (9) 0.6739 (10) 0.7052 (3) 0.094 (2)
H21A 0.3380 0.6372 0.6785 0.140*
H21B 0.3534 0.7868 0.7215 0.140*
H21C 0.1865 0.6772 0.6812 0.140*
C22 0.1986 (8) 0.5529 (9) 0.7577 (3) 0.0802 (18)
H22 0.1050 0.4449 0.7486 0.096*
C23 0.0453 (10) 0.4797 (11) 0.9012 (4) 0.110 (3)
H23A −0.0384 0.4820 0.8735 0.165*
H23B 0.1082 0.5886 0.9225 0.165*
H23C −0.0123 0.3896 0.9318 0.165*
C24 0.1635 (9) 0.4481 (9) 0.8648 (3) 0.093 (2)
H24A 0.1012 0.3351 0.8454 0.112*
H24B 0.2505 0.4498 0.8925 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0524 (18) 0.0364 (15) 0.0433 (17) 0.0272 (14) 0.0132 (13) 0.0028 (12)
O2 0.0400 (16) 0.0387 (17) 0.0457 (18) 0.0005 (13) −0.0158 (13) 0.0099 (13)
O3 0.057 (2) 0.067 (2) 0.055 (2) 0.0340 (19) 0.0085 (16) −0.0168 (16)
N1 0.055 (3) 0.072 (3) 0.057 (3) 0.025 (2) 0.007 (2) −0.006 (2)
C1 0.0221 (17) 0.0219 (18) 0.0266 (17) 0.0067 (15) −0.0059 (15) −0.0002 (14)
C2 0.0277 (19) 0.032 (2) 0.033 (2) 0.0144 (17) −0.0027 (15) 0.0006 (15)
C3 0.042 (2) 0.045 (2) 0.0238 (19) 0.0221 (19) 0.0043 (16) 0.0013 (16)
C4 0.041 (2) 0.035 (2) 0.028 (2) 0.0174 (18) 0.0057 (17) 0.0098 (17)
C5 0.032 (2) 0.030 (2) 0.038 (2) 0.0134 (17) −0.0003 (17) 0.0037 (16)
C6 0.061 (3) 0.035 (2) 0.048 (3) 0.026 (2) 0.006 (2) 0.0130 (19)
C7 0.078 (3) 0.042 (3) 0.058 (3) 0.040 (3) 0.011 (3) 0.006 (2)
C8 0.071 (3) 0.048 (3) 0.045 (3) 0.038 (3) 0.011 (2) −0.002 (2)
C9 0.045 (2) 0.036 (2) 0.033 (2) 0.0229 (19) 0.0051 (17) 0.0049 (17)
C10 0.0246 (18) 0.0260 (19) 0.032 (2) 0.0093 (15) −0.0003 (15) 0.0000 (15)
C11 0.0305 (19) 0.0234 (18) 0.0277 (18) 0.0148 (16) 0.0031 (15) 0.0026 (14)
C12 0.032 (2) 0.028 (2) 0.032 (2) 0.0116 (17) −0.0026 (16) −0.0003 (16)
C13 0.045 (2) 0.043 (2) 0.030 (2) 0.018 (2) −0.0035 (18) 0.0063 (18)
C14 0.045 (2) 0.040 (2) 0.029 (2) 0.017 (2) 0.0055 (18) 0.0156 (18)
C15 0.031 (2) 0.029 (2) 0.040 (2) 0.0129 (17) 0.0030 (17) 0.0030 (16)
C16 0.039 (2) 0.037 (2) 0.052 (3) 0.0106 (19) 0.008 (2) 0.0136 (19)
C17 0.033 (2) 0.040 (2) 0.067 (3) −0.003 (2) −0.007 (2) 0.003 (2)
C18 0.041 (3) 0.049 (3) 0.058 (3) 0.003 (2) −0.016 (2) 0.005 (2)
C19 0.039 (2) 0.041 (2) 0.035 (2) 0.0126 (19) −0.0064 (17) 0.0014 (17)
C20 0.0285 (19) 0.0288 (19) 0.032 (2) 0.0168 (16) 0.0016 (16) −0.0009 (15)
C21 0.076 (4) 0.149 (6) 0.058 (3) 0.057 (5) −0.007 (3) 0.016 (4)
C22 0.055 (3) 0.097 (5) 0.070 (4) 0.025 (3) −0.012 (3) −0.021 (4)
C23 0.095 (5) 0.110 (6) 0.119 (6) 0.047 (5) 0.032 (5) 0.033 (5)
C24 0.092 (5) 0.087 (5) 0.088 (5) 0.035 (4) 0.024 (4) 0.014 (4)

Geometric parameters (Å, º)

O1—C2 1.357 (4) C12—C13 1.397 (5)
O1—H1 0.8200 C13—C14 1.358 (6)
O2—C12 1.360 (5) C13—H13 0.9300
O2—H2 0.8200 C14—C15 1.403 (6)
O3—N1 1.313 (5) C14—H14 0.9300
N1—C22 1.265 (7) C15—C20 1.417 (5)
N1—C24 1.506 (8) C15—C16 1.420 (6)
C1—C2 1.376 (5) C16—C17 1.351 (6)
C1—C10 1.431 (5) C16—H16 0.9300
C1—C11 1.498 (5) C17—C18 1.394 (7)
C2—C3 1.416 (5) C17—H17 0.9300
C3—C4 1.361 (6) C18—C19 1.366 (6)
C3—H3A 0.9300 C18—H18 0.9300
C4—C5 1.406 (6) C19—C20 1.408 (5)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.416 (6) C21—C22 1.463 (9)
C5—C10 1.419 (5) C21—H21A 0.9600
C6—C7 1.345 (6) C21—H21B 0.9600
C6—H6 0.9300 C21—H21C 0.9600
C7—C8 1.397 (7) C22—H22 0.9300
C7—H7 0.9300 C23—C24 1.447 (10)
C8—C9 1.361 (6) C23—H23A 0.9600
C8—H8 0.9300 C23—H23B 0.9600
C9—C10 1.412 (5) C23—H23C 0.9600
C9—H9 0.9300 C24—H24A 0.9700
C11—C12 1.373 (5) C24—H24B 0.9700
C11—C20 1.434 (5)
C2—O1—H1 109.5 C12—C13—H13 119.4
C12—O2—H2 109.5 C13—C14—C15 120.7 (3)
C22—N1—O3 122.6 (5) C13—C14—H14 119.6
C22—N1—C24 121.1 (5) C15—C14—H14 119.6
O3—N1—C24 116.3 (4) C14—C15—C20 118.6 (3)
C2—C1—C10 118.6 (3) C14—C15—C16 122.2 (4)
C2—C1—C11 120.9 (3) C20—C15—C16 119.2 (4)
C10—C1—C11 120.5 (3) C17—C16—C15 121.5 (4)
O1—C2—C1 119.2 (3) C17—C16—H16 119.2
O1—C2—C3 119.9 (3) C15—C16—H16 119.2
C1—C2—C3 120.9 (3) C16—C17—C18 119.3 (4)
C4—C3—C2 120.5 (3) C16—C17—H17 120.4
C4—C3—H3A 119.7 C18—C17—H17 120.4
C2—C3—H3A 119.7 C19—C18—C17 121.2 (4)
C3—C4—C5 121.0 (3) C19—C18—H18 119.4
C3—C4—H4 119.5 C17—C18—H18 119.4
C5—C4—H4 119.5 C18—C19—C20 121.2 (4)
C4—C5—C6 122.0 (4) C18—C19—H19 119.4
C4—C5—C10 118.7 (3) C20—C19—H19 119.4
C6—C5—C10 119.3 (4) C19—C20—C15 117.6 (4)
C7—C6—C5 121.3 (4) C19—C20—C11 122.3 (3)
C7—C6—H6 119.4 C15—C20—C11 120.1 (3)
C5—C6—H6 119.4 C22—C21—H21A 109.5
C6—C7—C8 119.8 (4) C22—C21—H21B 109.5
C6—C7—H7 120.1 H21A—C21—H21B 109.5
C8—C7—H7 120.1 C22—C21—H21C 109.5
C9—C8—C7 120.9 (4) H21A—C21—H21C 109.5
C9—C8—H8 119.5 H21B—C21—H21C 109.5
C7—C8—H8 119.5 N1—C22—C21 125.2 (6)
C8—C9—C10 121.2 (4) N1—C22—H22 117.4
C8—C9—H9 119.4 C21—C22—H22 117.4
C10—C9—H9 119.4 C24—C23—H23A 109.5
C9—C10—C5 117.4 (3) C24—C23—H23B 109.5
C9—C10—C1 122.3 (3) H23A—C23—H23B 109.5
C5—C10—C1 120.3 (3) C24—C23—H23C 109.5
C12—C11—C20 118.4 (3) H23A—C23—H23C 109.5
C12—C11—C1 121.7 (3) H23B—C23—H23C 109.5
C20—C11—C1 120.0 (3) C23—C24—N1 110.4 (6)
O2—C12—C11 118.6 (3) C23—C24—H24A 109.6
O2—C12—C13 120.4 (3) N1—C24—H24A 109.6
C11—C12—C13 121.1 (3) C23—C24—H24B 109.6
C14—C13—C12 121.1 (4) N1—C24—H24B 109.6
C14—C13—H13 119.4 H24A—C24—H24B 108.1
C10—C1—C2—O1 178.3 (3) C20—C11—C12—O2 −177.4 (3)
C11—C1—C2—O1 −0.5 (5) C1—C11—C12—O2 2.2 (5)
C10—C1—C2—C3 −0.6 (5) C20—C11—C12—C13 2.7 (5)
C11—C1—C2—C3 −179.4 (3) C1—C11—C12—C13 −177.7 (3)
O1—C2—C3—C4 −178.4 (4) O2—C12—C13—C14 178.5 (4)
C1—C2—C3—C4 0.5 (6) C11—C12—C13—C14 −1.6 (6)
C2—C3—C4—C5 −0.3 (6) C12—C13—C14—C15 −1.0 (6)
C3—C4—C5—C6 −179.0 (4) C13—C14—C15—C20 2.4 (6)
C3—C4—C5—C10 0.3 (6) C13—C14—C15—C16 −175.4 (4)
C4—C5—C6—C7 179.2 (5) C14—C15—C16—C17 178.4 (5)
C10—C5—C6—C7 −0.1 (7) C20—C15—C16—C17 0.7 (7)
C5—C6—C7—C8 −0.2 (8) C15—C16—C17—C18 1.0 (8)
C6—C7—C8—C9 0.8 (8) C16—C17—C18—C19 −1.7 (8)
C7—C8—C9—C10 −1.1 (7) C17—C18—C19—C20 0.6 (8)
C8—C9—C10—C5 0.8 (6) C18—C19—C20—C15 1.1 (6)
C8—C9—C10—C1 −178.3 (4) C18—C19—C20—C11 −177.2 (4)
C4—C5—C10—C9 −179.5 (4) C14—C15—C20—C19 −179.5 (4)
C6—C5—C10—C9 −0.2 (5) C16—C15—C20—C19 −1.7 (5)
C4—C5—C10—C1 −0.5 (5) C14—C15—C20—C11 −1.2 (5)
C6—C5—C10—C1 178.9 (4) C16—C15—C20—C11 176.6 (4)
C2—C1—C10—C9 179.7 (3) C12—C11—C20—C19 177.0 (4)
C11—C1—C10—C9 −1.6 (5) C1—C11—C20—C19 −2.7 (5)
C2—C1—C10—C5 0.6 (5) C12—C11—C20—C15 −1.2 (5)
C11—C1—C10—C5 179.4 (3) C1—C11—C20—C15 179.1 (3)
C2—C1—C11—C12 −100.6 (4) O3—N1—C22—C21 0.1 (10)
C10—C1—C11—C12 80.6 (4) C24—N1—C22—C21 −178.4 (6)
C2—C1—C11—C20 79.0 (4) C22—N1—C24—C23 −100.9 (8)
C10—C1—C11—C20 −99.7 (4) O3—N1—C24—C23 80.5 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 0.82 1.90 2.706 (5) 167
O2—H2···O3i 0.82 1.96 2.763 (5) 168

Symmetry code: (i) −x+y, −x+1, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5033).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cicchi, S., Marradi, M., Goti, A. & Brandi, A. (2001). Tetrahedron Lett. 42, 6503–6505.
  4. Engel, P. S., Duan, S. M. & Arhancet, G. B. (1997). J. Org. Chem. 62, 3537–3541.
  5. Liu, J. T., Jin, Q. H., Lv, H. J. & Huang, W. Y. (2004). Chin. J. Chem. 22, 945–949.
  6. Noyori, R., Tomino, I., Tanimoto, Y. & Nishizawa, M. (1984). J. Am. Chem. Soc. 106, 6709–6712.
  7. Reeder, J., Castro, P. P., Knobler, C. B., Martinborough, E., Owens, L. & Diederich, F. (1994). J. Org. Chem. 59, 3151–3160.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Toda, F., Mori, K., Stein, Z. & Goldberg, I. (1989). Tetrahedron Lett. 30, 1841–1843.
  10. Zhang, M. & Schuster, G. B. (1994). J. Am. Chem. Soc. 116, 4852–4857.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812007477/is5033sup1.cif

e-68-0o948-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007477/is5033Isup2.hkl

e-68-0o948-Isup2.hkl (83.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES