Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o951. doi: 10.1107/S1600536812008720

N-(4-Chloro-3-nitro­phen­yl)succinamic acid

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3343932  PMID: 22590013

Abstract

In the title compound, C10H9ClN2O5, the nitro group is significantly twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 27.4 (6)°]. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯O hydrogen bonds. These dimers are further linked by N—H⋯O hydrogen bonds into double chains running along the a axis.

Related literature  

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007), on N-chloro­aryl­amides, see: Gowda et al. (2003); Jyothi & Gowda (2004) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006).graphic file with name e-68-0o951-scheme1.jpg

Experimental  

Crystal data  

  • C10H9ClN2O5

  • M r = 272.64

  • Monoclinic, Inline graphic

  • a = 4.8089 (8) Å

  • b = 10.278 (1) Å

  • c = 23.062 (3) Å

  • β = 90.69 (2)°

  • V = 1139.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.44 × 0.12 × 0.10 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.861, T max = 0.966

  • 4342 measured reflections

  • 2305 independent reflections

  • 1601 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.169

  • S = 1.05

  • 2305 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008720/bt5832sup1.cif

e-68-0o951-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008720/bt5832Isup2.hkl

e-68-0o951-Isup2.hkl (113.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008720/bt5832Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.28 (3) 3.006 (3) 144 (3)
O3—H3O⋯O2ii 0.83 (2) 1.84 (2) 2.667 (3) 176 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-chloroarylsulfonamides (Gowda et al., 2003; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-Chloro-3-nitrophenyl)succinamic acid has been determined (Fig. 1). The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the N—H bond is syn to the meta–nitro group. The conformations of the amide C═O and the carboxyl C═O of the acid segment are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the C═O and O—H bonds of the acid group are in syn position to each other, in contrast to the anti positions observed in N-(4-Chloro-3-nitro- phenyl)maleamic acid (I) (Chaithanya et al., 2012).

The dihedral angle between the phenyl ring and the amide group in the title compound is 31.8 (2)°, compared to the value of 11.5 (3)° in (I).

In the structure, the O—H···O and N—H···O intermolecular hydrogen bonds link the molecules into double chains running along the a axis (Table 1, Fig. 2).

Experimental

Succinic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with 4-chloro-3-nitroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloro-3-nitroaniline. The resultant solid N-(4-Chloro-3-nitrophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Rod like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation of the solvent (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were located in a difference map Those bonded to C H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. The coordinates of the H atoms bonded to N and O were refined with the N—H and O—H distance restrained to 0.86 (2) Å and 0.82 (2)Å, respectively. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H9ClN2O5 F(000) = 560
Mr = 272.64 Dx = 1.589 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1280 reflections
a = 4.8089 (8) Å θ = 2.6–27.7°
b = 10.278 (1) Å µ = 0.35 mm1
c = 23.062 (3) Å T = 293 K
β = 90.69 (2)° Rod, colourless
V = 1139.8 (3) Å3 0.44 × 0.12 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2305 independent reflections
Radiation source: fine-focus sealed tube 1601 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −3→6
Tmin = 0.861, Tmax = 0.966 k = −12→11
4342 measured reflections l = −28→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 1.4622P] where P = (Fo2 + 2Fc2)/3
2305 reflections (Δ/σ)max = 0.011
169 parameters Δρmax = 0.42 e Å3
2 restraints Δρmin = −0.41 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0737 (6) 0.7722 (3) 0.13397 (13) 0.0366 (7)
C2 −0.0598 (7) 0.7250 (3) 0.18230 (14) 0.0438 (8)
H2 −0.1913 0.7759 0.2009 0.053*
C3 0.0015 (8) 0.6024 (3) 0.20300 (14) 0.0503 (9)
C4 0.1914 (9) 0.5237 (3) 0.17540 (17) 0.0574 (10)
C5 0.3217 (8) 0.5714 (3) 0.12722 (17) 0.0556 (9)
H5 0.4498 0.5194 0.1082 0.067*
C6 0.2671 (7) 0.6949 (3) 0.10641 (14) 0.0451 (8)
H6 0.3597 0.7258 0.0740 0.054*
C7 0.1739 (6) 0.9830 (3) 0.08795 (13) 0.0355 (7)
C8 0.0419 (6) 1.1125 (3) 0.07321 (15) 0.0430 (8)
H8A −0.1226 1.0980 0.0493 0.052*
H8B −0.0156 1.1550 0.1087 0.052*
C9 0.2393 (6) 1.1998 (3) 0.04144 (15) 0.0433 (8)
H9A 0.4022 1.2140 0.0659 0.052*
H9B 0.3000 1.1551 0.0068 0.052*
C10 0.1234 (6) 1.3291 (3) 0.02419 (14) 0.0389 (7)
N1 0.0022 (5) 0.8974 (3) 0.11358 (12) 0.0427 (7)
H1N −0.163 (4) 0.922 (3) 0.1198 (15) 0.051*
N2 −0.1337 (9) 0.5654 (4) 0.25738 (15) 0.0712 (11)
O1 0.4145 (4) 0.9578 (2) 0.07676 (12) 0.0550 (7)
O2 −0.1033 (5) 1.3682 (2) 0.04216 (12) 0.0557 (7)
O3 0.2758 (5) 1.3960 (2) −0.00944 (13) 0.0588 (7)
H3O 0.219 (8) 1.470 (2) −0.0181 (18) 0.071*
O4 −0.0219 (9) 0.4891 (5) 0.28923 (18) 0.1385 (19)
O5 −0.3572 (10) 0.6136 (4) 0.26831 (16) 0.1106 (14)
Cl1 0.2654 (4) 0.36516 (11) 0.19545 (7) 0.1142 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0353 (16) 0.0357 (16) 0.0387 (16) −0.0019 (13) −0.0005 (13) 0.0035 (13)
C2 0.0455 (18) 0.0432 (18) 0.0428 (18) −0.0068 (14) 0.0034 (14) −0.0003 (14)
C3 0.066 (2) 0.047 (2) 0.0379 (17) −0.0164 (18) −0.0092 (16) 0.0070 (15)
C4 0.081 (3) 0.0361 (18) 0.055 (2) −0.0019 (18) −0.020 (2) 0.0122 (16)
C5 0.065 (2) 0.0406 (19) 0.061 (2) 0.0128 (17) −0.0061 (18) −0.0025 (17)
C6 0.0497 (19) 0.0431 (18) 0.0426 (18) 0.0047 (15) 0.0023 (14) 0.0036 (15)
C7 0.0315 (15) 0.0367 (16) 0.0382 (16) 0.0010 (12) 0.0023 (12) 0.0074 (13)
C8 0.0339 (16) 0.0375 (17) 0.058 (2) 0.0063 (13) 0.0102 (14) 0.0103 (15)
C9 0.0362 (16) 0.0367 (17) 0.057 (2) 0.0063 (13) 0.0090 (15) 0.0100 (15)
C10 0.0334 (16) 0.0382 (17) 0.0453 (18) −0.0002 (13) 0.0020 (13) 0.0058 (14)
N1 0.0332 (13) 0.0367 (14) 0.0585 (17) 0.0061 (11) 0.0110 (12) 0.0114 (13)
N2 0.086 (3) 0.072 (2) 0.055 (2) −0.028 (2) −0.0038 (19) 0.0273 (19)
O1 0.0343 (12) 0.0480 (14) 0.0831 (18) 0.0081 (10) 0.0141 (11) 0.0201 (13)
O2 0.0425 (13) 0.0464 (14) 0.0786 (18) 0.0124 (10) 0.0180 (12) 0.0196 (12)
O3 0.0525 (15) 0.0407 (14) 0.0837 (19) 0.0100 (11) 0.0238 (13) 0.0218 (13)
O4 0.126 (3) 0.192 (5) 0.098 (3) −0.007 (3) 0.001 (2) 0.094 (3)
O5 0.144 (4) 0.111 (3) 0.079 (2) −0.002 (3) 0.042 (2) 0.026 (2)
Cl1 0.1907 (17) 0.0468 (6) 0.1045 (11) 0.0161 (8) −0.0287 (10) 0.0271 (6)

Geometric parameters (Å, º)

C1—C2 1.381 (4) C7—C8 1.511 (4)
C1—C6 1.384 (4) C8—C9 1.503 (4)
C1—N1 1.411 (4) C8—H8A 0.9700
C2—C3 1.378 (5) C8—H8B 0.9700
C2—H2 0.9300 C9—C10 1.493 (4)
C3—C4 1.381 (6) C9—H9A 0.9700
C3—N2 1.470 (5) C9—H9B 0.9700
C4—C5 1.373 (5) C10—O2 1.238 (4)
C4—Cl1 1.729 (4) C10—O3 1.275 (4)
C5—C6 1.381 (5) N1—H1N 0.847 (18)
C5—H5 0.9300 N2—O4 1.198 (5)
C6—H6 0.9300 N2—O5 1.213 (5)
C7—O1 1.216 (3) O3—H3O 0.834 (19)
C7—N1 1.348 (4)
C2—C1—C6 119.3 (3) C9—C8—H8A 109.3
C2—C1—N1 118.4 (3) C7—C8—H8A 109.3
C6—C1—N1 122.2 (3) C9—C8—H8B 109.3
C3—C2—C1 120.1 (3) C7—C8—H8B 109.3
C3—C2—H2 119.9 H8A—C8—H8B 107.9
C1—C2—H2 119.9 C10—C9—C8 115.2 (3)
C2—C3—C4 121.1 (3) C10—C9—H9A 108.5
C2—C3—N2 115.9 (4) C8—C9—H9A 108.5
C4—C3—N2 122.9 (3) C10—C9—H9B 108.5
C5—C4—C3 118.3 (3) C8—C9—H9B 108.5
C5—C4—Cl1 117.3 (3) H9A—C9—H9B 107.5
C3—C4—Cl1 124.3 (3) O2—C10—O3 122.9 (3)
C4—C5—C6 121.5 (4) O2—C10—C9 121.8 (3)
C4—C5—H5 119.2 O3—C10—C9 115.3 (3)
C6—C5—H5 119.2 C7—N1—C1 126.4 (3)
C5—C6—C1 119.6 (3) C7—N1—H1N 118 (2)
C5—C6—H6 120.2 C1—N1—H1N 116 (2)
C1—C6—H6 120.2 O4—N2—O5 122.2 (4)
O1—C7—N1 122.9 (3) O4—N2—C3 119.5 (5)
O1—C7—C8 122.5 (3) O5—N2—C3 118.3 (4)
N1—C7—C8 114.6 (2) C10—O3—H3O 117 (3)
C9—C8—C7 111.7 (2)
C6—C1—C2—C3 0.6 (5) O1—C7—C8—C9 2.6 (5)
N1—C1—C2—C3 179.1 (3) N1—C7—C8—C9 −176.4 (3)
C1—C2—C3—C4 −1.5 (5) C7—C8—C9—C10 178.9 (3)
C1—C2—C3—N2 175.0 (3) C8—C9—C10—O2 10.1 (5)
C2—C3—C4—C5 1.1 (5) C8—C9—C10—O3 −170.8 (3)
N2—C3—C4—C5 −175.1 (3) O1—C7—N1—C1 3.8 (5)
C2—C3—C4—Cl1 −175.8 (3) C8—C7—N1—C1 −177.2 (3)
N2—C3—C4—Cl1 8.1 (5) C2—C1—N1—C7 147.1 (3)
C3—C4—C5—C6 0.1 (6) C6—C1—N1—C7 −34.5 (5)
Cl1—C4—C5—C6 177.2 (3) C2—C3—N2—O4 −151.7 (4)
C4—C5—C6—C1 −1.0 (5) C4—C3—N2—O4 24.7 (6)
C2—C1—C6—C5 0.6 (5) C2—C3—N2—O5 28.7 (5)
N1—C1—C6—C5 −177.8 (3) C4—C3—N2—O5 −155.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (2) 2.28 (3) 3.006 (3) 144 (3)
O3—H3O···O2ii 0.83 (2) 1.84 (2) 2.667 (3) 176 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5832).

References

  1. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o873. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., D’Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.
  4. Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.
  5. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008720/bt5832sup1.cif

e-68-0o951-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008720/bt5832Isup2.hkl

e-68-0o951-Isup2.hkl (113.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008720/bt5832Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES