Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o952. doi: 10.1107/S1600536812006319

2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 4-fluoro­benzoate

Sammer Yousuf a,*, Aurang Zeb a, Fatima Z Basha a
PMCID: PMC3343933  PMID: 22590014

Abstract

In the title compound, C13H12FN3O4, the dihedral angle between the benzene and imidazole rings is 32.77 (12)°. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature  

For biological activities of metronidazole derivatives, see: Atia (2009); Beena et al. (2009); Bowden & Izadi (1998); Dubey et al. (2009); Mao et al. (2009); Qian et al. (2010).graphic file with name e-68-0o952-scheme1.jpg

Experimental  

Crystal data  

  • C13H12FN3O4

  • M r = 293.26

  • Monoclinic, Inline graphic

  • a = 8.9669 (12) Å

  • b = 18.784 (2) Å

  • c = 7.8288 (10) Å

  • β = 99.684 (3)°

  • V = 1299.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.50 × 0.29 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.941, T max = 0.981

  • 3782 measured reflections

  • 1186 independent reflections

  • 1150 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.06

  • 1186 reflections

  • 192 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006319/is5064sup1.cif

e-68-0o952-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006319/is5064Isup2.hkl

e-68-0o952-Isup2.hkl (58.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006319/is5064Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.45 3.378 (3) 172
C2—H2B⋯O3ii 0.93 2.46 3.356 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The title compound is a derivative of well known broad spectrum antibiotic metronidazole, commonly known as Flagyl. A number of metronidazole derivatives have been synthesized to evaluate their biological potentials, such as antibacterial (Atia, 2009; Dubey et al., 2009; Beena et al., 2009; Bowden & Izadi, 1998), anticancer (Qian et al., 2010), and H. pylori urease inhibitors (Mao et al., 2009). These properties of metronidazole derivatives attracted the attention of synthetic and medicinal chemists to further explore their potential against different diseases. In present study, metronidazole ester derivative was prepared in a cost effective manner to evaluate its antiglycation potential.

In the title compound, the benzene (C1–C6) and imidazole (N1/C10/C11/N2/C12) rings are almost planar (Fig. 1) with a dihedral angle of 32.77 (12)° between the mean planes. The bond lengths and angles are within the normal ranges. C1—H1A···O1i and C2—H2B···O3ii hydrogen bonds (symmetry codes as in Table 1) play important roles in stabilizing the crystal structure by forming a three-dimensional network (Fig. 2).

Experimental

The synthesis of title compounds 1 was achieved by reacting metronidazole (171 mg, 1.0 mmole) with 4-fluorobenzoic acid (1.2 equiv.) in the presence of dicyclohexylcarbodiimide (245 mg, 1.2 mmole) and 4-dimethylaminopyridine (0.35 mmole) in dichloromethane (10 ml) at room temperature for 40–45 h. The progress of reaction was monitored by TLC. The reaction was quenched with 20 ml HCl (0.5 M) and then basified with sat.NaHCO3. It was extracted with dichloromethane and evaporated in vacuo to obtain crude product. The mixture of crude product was purified by using silica gel chromatography (EtOAc:hexane, 3.0:7.0 to 7.0:3.0) which afforded compound 1 in 85% yield. Recrystallization from the slow evaporation of dichloromethane afforded pure crystals found suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma–Aldrich.

Refinement

H atoms on methyl, methylene and methine groups were positioned geometrically with C—H = 0.96, 0.97 and 0.93 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH and CH2) and 1.5Ueq(CH3). A rotating group model was applied to the methyl groups. In the absence of significant anomalous scattering effects, 952 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing view of the title compound.

Crystal data

C13H12FN3O4 F(000) = 608
Mr = 293.26 Dx = 1.498 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 8.9669 (12) Å Cell parameters from 2305 reflections
b = 18.784 (2) Å θ = 2.6–28.0°
c = 7.8288 (10) Å µ = 0.12 mm1
β = 99.684 (3)° T = 273 K
V = 1299.9 (3) Å3 Block, colourless
Z = 4 0.50 × 0.29 × 0.16 mm

Data collection

Bruker SMART APEX CCD diffractometer 1186 independent reflections
Radiation source: fine-focus sealed tube 1150 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.941, Tmax = 0.981 k = −22→22
3782 measured reflections l = −9→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2616P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1186 reflections Δρmax = 0.15 e Å3
192 parameters Δρmin = −0.11 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0055 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1173 (2) 0.24543 (13) −0.1523 (3) 0.0625 (6)
O2 0.0800 (2) 0.27301 (10) 0.0543 (2) 0.0534 (5)
O3 0.0473 (3) 0.48885 (12) 0.3047 (4) 0.0795 (8)
O4 0.2371 (3) 0.50643 (12) 0.5096 (4) 0.0726 (7)
N1 0.0456 (2) 0.34305 (11) 0.3929 (3) 0.0405 (5)
N2 0.1729 (3) 0.29745 (13) 0.6362 (3) 0.0532 (6)
N3 0.1392 (3) 0.46795 (12) 0.4283 (3) 0.0516 (6)
C1 0.1985 (3) 0.13945 (15) 0.0541 (3) 0.0454 (6)
H1A 0.2496 0.1741 0.1262 0.054*
C2 0.2552 (3) 0.07076 (17) 0.0578 (4) 0.0539 (7)
H2B 0.3442 0.0587 0.1312 0.065*
C3 0.1764 (3) 0.02112 (15) −0.0496 (4) 0.0533 (7)
C4 0.0462 (3) 0.03555 (17) −0.1617 (4) 0.0554 (7)
H4A −0.0035 0.0004 −0.2335 0.066*
C5 −0.0093 (3) 0.10470 (15) −0.1646 (4) 0.0481 (6)
H5A −0.0978 0.1163 −0.2397 0.058*
C6 0.0659 (3) 0.15675 (14) −0.0565 (3) 0.0408 (6)
C7 −0.0021 (3) 0.22884 (14) −0.0609 (3) 0.0429 (6)
C8 0.0198 (4) 0.34362 (15) 0.0713 (4) 0.0569 (7)
H8A −0.0514 0.3554 −0.0323 0.068*
H8B 0.1013 0.3781 0.0840 0.068*
C9 −0.0587 (3) 0.34704 (14) 0.2269 (4) 0.0474 (6)
H9A −0.1153 0.3912 0.2230 0.057*
H9B −0.1304 0.3081 0.2208 0.057*
C10 0.1340 (3) 0.39608 (14) 0.4807 (4) 0.0454 (6)
C11 0.2095 (3) 0.36676 (16) 0.6288 (4) 0.0535 (7)
H11A 0.2764 0.3909 0.7126 0.064*
C12 0.0761 (3) 0.28463 (14) 0.4928 (4) 0.0435 (6)
C13 0.0081 (4) 0.21350 (15) 0.4469 (4) 0.0579 (8)
H13A 0.0472 0.1798 0.5353 0.087*
H13B 0.0332 0.1984 0.3381 0.087*
H13C −0.0998 0.2165 0.4376 0.087*
F1 0.2301 (3) −0.04671 (11) −0.0425 (3) 0.0827 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0549 (11) 0.0618 (12) 0.0642 (14) 0.0139 (10) −0.0092 (10) 0.0027 (11)
O2 0.0660 (12) 0.0480 (11) 0.0422 (11) 0.0104 (9) −0.0022 (9) −0.0033 (8)
O3 0.0938 (17) 0.0483 (12) 0.0877 (18) 0.0064 (12) −0.0103 (15) 0.0188 (12)
O4 0.0740 (14) 0.0472 (11) 0.0926 (18) −0.0096 (11) 0.0026 (13) −0.0116 (12)
N1 0.0454 (10) 0.0358 (10) 0.0395 (12) 0.0050 (8) 0.0048 (9) −0.0012 (9)
N2 0.0660 (14) 0.0472 (12) 0.0429 (14) 0.0034 (11) −0.0012 (11) 0.0026 (10)
N3 0.0562 (12) 0.0392 (11) 0.0598 (15) 0.0043 (10) 0.0113 (11) −0.0010 (11)
C1 0.0473 (13) 0.0508 (14) 0.0371 (14) 0.0048 (11) 0.0039 (11) 0.0013 (11)
C2 0.0525 (15) 0.0622 (18) 0.0451 (15) 0.0134 (13) 0.0028 (12) 0.0075 (13)
C3 0.0732 (19) 0.0435 (15) 0.0463 (17) 0.0125 (13) 0.0193 (14) 0.0061 (12)
C4 0.0673 (17) 0.0485 (14) 0.0510 (17) −0.0084 (13) 0.0119 (14) −0.0089 (13)
C5 0.0475 (13) 0.0529 (15) 0.0424 (15) −0.0014 (11) 0.0033 (11) −0.0002 (11)
C6 0.0417 (11) 0.0455 (13) 0.0359 (14) 0.0014 (10) 0.0088 (10) 0.0009 (10)
C7 0.0454 (13) 0.0484 (15) 0.0347 (14) 0.0049 (10) 0.0064 (10) 0.0034 (11)
C8 0.085 (2) 0.0412 (15) 0.0427 (16) 0.0099 (13) 0.0049 (14) 0.0064 (11)
C9 0.0532 (14) 0.0419 (13) 0.0427 (15) 0.0073 (11) −0.0049 (11) −0.0005 (11)
C10 0.0480 (12) 0.0395 (13) 0.0474 (16) 0.0047 (10) 0.0043 (11) −0.0050 (10)
C11 0.0553 (14) 0.0476 (14) 0.0531 (17) 0.0011 (12) −0.0038 (12) −0.0071 (13)
C12 0.0517 (13) 0.0381 (12) 0.0406 (15) 0.0044 (11) 0.0079 (11) 0.0033 (10)
C13 0.082 (2) 0.0397 (14) 0.0501 (18) −0.0051 (14) 0.0053 (15) 0.0026 (13)
F1 0.1168 (17) 0.0497 (11) 0.0819 (15) 0.0242 (11) 0.0175 (13) 0.0035 (10)

Geometric parameters (Å, º)

O1—C7 1.195 (3) C3—C4 1.364 (4)
O2—C7 1.349 (3) C4—C5 1.390 (4)
O2—C8 1.447 (3) C4—H4A 0.9300
O3—N3 1.225 (3) C5—C6 1.391 (4)
O4—N3 1.229 (4) C5—H5A 0.9300
N1—C12 1.349 (3) C6—C7 1.483 (3)
N1—C10 1.382 (3) C8—C9 1.507 (4)
N1—C9 1.470 (4) C8—H8A 0.9700
N2—C12 1.321 (4) C8—H8B 0.9700
N2—C11 1.346 (4) C9—H9A 0.9700
N3—C10 1.414 (4) C9—H9B 0.9700
C1—C2 1.385 (4) C10—C11 1.357 (4)
C1—C6 1.387 (3) C11—H11A 0.9300
C1—H1A 0.9300 C12—C13 1.487 (4)
C2—C3 1.370 (4) C13—H13A 0.9600
C2—H2B 0.9300 C13—H13B 0.9600
C3—F1 1.360 (3) C13—H13C 0.9600
C7—O2—C8 117.1 (2) O2—C7—C6 111.7 (2)
C12—N1—C10 104.7 (2) O2—C8—C9 110.2 (2)
C12—N1—C9 126.2 (2) O2—C8—H8A 109.6
C10—N1—C9 129.0 (2) C9—C8—H8A 109.6
C12—N2—C11 105.6 (2) O2—C8—H8B 109.6
O3—N3—O4 123.2 (3) C9—C8—H8B 109.6
O3—N3—C10 119.0 (2) H8A—C8—H8B 108.1
O4—N3—C10 117.8 (3) N1—C9—C8 113.4 (2)
C2—C1—C6 120.3 (3) N1—C9—H9A 108.9
C2—C1—H1A 119.9 C8—C9—H9A 108.9
C6—C1—H1A 119.9 N1—C9—H9B 108.9
C3—C2—C1 118.2 (3) C8—C9—H9B 108.9
C3—C2—H2B 120.9 H9A—C9—H9B 107.7
C1—C2—H2B 120.9 C11—C10—N1 107.1 (2)
F1—C3—C4 118.1 (3) C11—C10—N3 126.8 (3)
F1—C3—C2 118.1 (3) N1—C10—N3 126.0 (2)
C4—C3—C2 123.8 (3) N2—C11—C10 109.9 (3)
C3—C4—C5 117.5 (3) N2—C11—H11A 125.1
C3—C4—H4A 121.3 C10—C11—H11A 125.1
C5—C4—H4A 121.3 N2—C12—N1 112.6 (2)
C4—C5—C6 120.7 (3) N2—C12—C13 123.6 (2)
C4—C5—H5A 119.6 N1—C12—C13 123.8 (3)
C6—C5—H5A 119.6 C12—C13—H13A 109.5
C1—C6—C5 119.5 (2) C12—C13—H13B 109.5
C1—C6—C7 122.3 (2) H13A—C13—H13B 109.5
C5—C6—C7 118.2 (2) C12—C13—H13C 109.5
O1—C7—O2 124.0 (2) H13A—C13—H13C 109.5
O1—C7—C6 124.2 (3) H13B—C13—H13C 109.5
C6—C1—C2—C3 −0.3 (4) O2—C8—C9—N1 70.0 (3)
C1—C2—C3—F1 −178.3 (2) C12—N1—C10—C11 −1.2 (3)
C1—C2—C3—C4 0.8 (4) C9—N1—C10—C11 179.3 (3)
F1—C3—C4—C5 178.4 (3) C12—N1—C10—N3 −178.8 (3)
C2—C3—C4—C5 −0.6 (4) C9—N1—C10—N3 1.7 (4)
C3—C4—C5—C6 −0.1 (4) O3—N3—C10—C11 −168.7 (3)
C2—C1—C6—C5 −0.4 (4) O4—N3—C10—C11 11.5 (4)
C2—C1—C6—C7 177.9 (2) O3—N3—C10—N1 8.4 (4)
C4—C5—C6—C1 0.6 (4) O4—N3—C10—N1 −171.3 (3)
C4—C5—C6—C7 −177.8 (2) C12—N2—C11—C10 0.3 (3)
C8—O2—C7—O1 2.6 (4) N1—C10—C11—N2 0.6 (3)
C8—O2—C7—C6 −175.7 (2) N3—C10—C11—N2 178.2 (3)
C1—C6—C7—O1 −178.7 (3) C11—N2—C12—N1 −1.1 (3)
C5—C6—C7—O1 −0.4 (4) C11—N2—C12—C13 179.0 (3)
C1—C6—C7—O2 −0.4 (3) C10—N1—C12—N2 1.4 (3)
C5—C6—C7—O2 177.9 (2) C9—N1—C12—N2 −179.0 (2)
C7—O2—C8—C9 99.1 (3) C10—N1—C12—C13 −178.6 (2)
C12—N1—C9—C8 −99.5 (3) C9—N1—C12—C13 0.9 (4)
C10—N1—C9—C8 79.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.93 2.45 3.378 (3) 172
C2—H2B···O3ii 0.93 2.46 3.356 (4) 162

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5064).

References

  1. Atia, A. J. K. (2009). Molecules, 14, 2431–2446. [DOI] [PMC free article] [PubMed]
  2. Beena, Kumar, N., Rohilla, R. K., Roy, N. & Rawat, D. S. (2009). Bioorg. Med. Chem. Lett. 19, 1396–1398. [DOI] [PubMed]
  3. Bowden, K. & Izadi, J. (1998). Il Farmaco, 53, 58–61.
  4. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dubey, S., Jain, V. & Preethi, G. B. (2009). Indian J. Chem. Sect. B, 48, 1571–1576.
  6. Mao, W.-J., Lv, P.-C., Shi, L., Li, H.-Q. & Zhu, H.-L. (2009). Bioorg. Med. Chem. 17, 7531–7536. [DOI] [PubMed]
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Qian, Y., Zhang, H.-J., Zhang, H., Xu, C., Zhao, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991–4996. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006319/is5064sup1.cif

e-68-0o952-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006319/is5064Isup2.hkl

e-68-0o952-Isup2.hkl (58.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006319/is5064Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES