Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o953–o954. doi: 10.1107/S1600536812001183

(Z)-N-Methyl-2-(5-nitro-2-oxoindolin-3-yl­idene)hydrazinecarbothio­amide

Amna Qasem Ali a,b, Naser Eltaher Eltayeb c,, Siang Guan Teoh a,*, Abdussalam Salhin a, Hoong-Kun Fun d,§
PMCID: PMC3343934  PMID: 22590015

Abstract

In the title compound, C10H9N5O3S, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via N—H⋯S hydrogen bonds into a zigzag chain along the b axis. C—H⋯O inter­actions are observed between the chains.

Related literature  

For related structures, see: Qasem Ali et al. (2011a ,b ); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anti­cancer activity of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-68-0o953-scheme1.jpg

Experimental  

Crystal data  

  • C10H9N5O3S

  • M r = 279.28

  • Monoclinic, Inline graphic

  • a = 4.6316 (4) Å

  • b = 9.3157 (8) Å

  • c = 26.458 (2) Å

  • β = 94.485 (2)°

  • V = 1138.09 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.36 × 0.12 × 0.07 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.900, T max = 0.979

  • 10734 measured reflections

  • 2710 independent reflections

  • 2177 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.102

  • S = 1.10

  • 2710 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001183/is5048sup1.cif

e-68-0o953-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001183/is5048Isup2.hkl

e-68-0o953-Isup2.hkl (133.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001183/is5048Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.84 (3) 2.02 (3) 2.697 (2) 137 (3)
N1—H1N1⋯S1i 0.81 (3) 2.52 (3) 3.320 (2) 171 (3)
C2—H2A⋯O1ii 0.95 2.39 3.317 (3) 165
C10—H10A⋯O2iii 0.98 2.56 3.079 (3) 113

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a schol­arship.

supplementary crystallographic information

Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and antifungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011a). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig. 1.

In this compound (Fig. 1), the chain N2/N3//C9/S1/N4/C10 connected to the nine-membered 5-nitroindolin-2-one ring system in C7. In this chain, C7—N2—N3—C9 and C10—N4—C9—S1 have torsion angles 177.82 (19) and -0.9 (3)°, respectively. The essentially planar conformation of the molecule is maintained by an intramolecular N3—H1N3···O1 hydrogen bond (Table 1) with a graph-set S(6) (Bernstein et al., 1995) In the crystal, molecules are linked via an intermolecular N1—H1N1···S1i hydrogen bond into an infinite one-dimensional chain along the b axis (Table 1 and Fig. 2). C2—H2A···O1ii and C10—H10A···O2iii hydrogen bonds (Table 1) are also observed between the chains.

Experimental

The Schiff base have been synthesized by refluxing the reaction mixture of hot ethanolic solution (30 ml) of 5-methyl-3-thiosemicarbazide (0.01 mol) and hot ethanolic solution (30 ml) of 5-nitroisatin (0.01 mol) for 2 hrs. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH (yield 80%, m.p. 579.8–580.3 K). The orange crystals were grown in an acetone-DMF (3:1) solution by slow evaporation at room temperature.

Refinement

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic ring and C—H = 0.98 Å for methyl group, and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for aromatic ring and methyl group, respectively. The highest residual electron density peak is located at 0.81 Å from C6 and the deepest hole is located at 0.36 Å from Sl.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9N5O3S F(000) = 576
Mr = 279.28 Dx = 1.630 Mg m3
Monoclinic, P21/c Melting point = 579.8–580.3 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 4.6316 (4) Å Cell parameters from 3870 reflections
b = 9.3157 (8) Å θ = 2.7–30.1°
c = 26.458 (2) Å µ = 0.30 mm1
β = 94.485 (2)° T = 100 K
V = 1138.09 (17) Å3 Needle, orange
Z = 4 0.36 × 0.12 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 2710 independent reflections
Radiation source: fine-focus sealed tube 2177 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
φ and ω scans θmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −6→6
Tmin = 0.900, Tmax = 0.979 k = −11→12
10734 measured reflections l = −34→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0189P)2 + 1.8143P] where P = (Fo2 + 2Fc2)/3
2710 reflections (Δ/σ)max = 0.001
185 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.21633 (12) 0.51362 (6) 0.32848 (2) 0.01849 (15)
O1 0.5410 (3) 0.21885 (18) 0.25632 (6) 0.0199 (4)
O2 −0.1914 (4) −0.2525 (2) 0.47157 (8) 0.0409 (5)
O3 0.1838 (4) −0.1372 (2) 0.50290 (7) 0.0304 (4)
N1 0.2084 (4) 0.0484 (2) 0.27784 (8) 0.0187 (4)
N2 0.6885 (4) 0.2193 (2) 0.36918 (7) 0.0159 (4)
N3 0.8430 (4) 0.3086 (2) 0.34179 (7) 0.0166 (4)
N4 1.0960 (4) 0.3840 (2) 0.41442 (7) 0.0189 (4)
N5 0.0142 (5) −0.1717 (2) 0.46698 (8) 0.0242 (5)
C1 0.1322 (5) −0.0181 (2) 0.32196 (8) 0.0167 (5)
C2 −0.0740 (5) −0.1225 (3) 0.32723 (9) 0.0198 (5)
H2A −0.1871 −0.1592 0.2986 0.024*
C3 −0.1108 (5) −0.1721 (3) 0.37559 (9) 0.0212 (5)
H3A −0.2502 −0.2444 0.3807 0.025*
C4 0.0580 (5) −0.1154 (3) 0.41667 (9) 0.0198 (5)
C5 0.2677 (5) −0.0110 (3) 0.41212 (9) 0.0185 (5)
H5A 0.3813 0.0249 0.4408 0.022*
C6 0.3033 (5) 0.0383 (2) 0.36375 (8) 0.0166 (5)
C7 0.4952 (5) 0.1430 (2) 0.34383 (8) 0.0155 (4)
C8 0.4257 (5) 0.1451 (2) 0.28722 (8) 0.0166 (5)
C9 1.0477 (5) 0.3984 (2) 0.36484 (8) 0.0164 (5)
C10 1.3117 (5) 0.4679 (3) 0.44437 (9) 0.0257 (6)
H10A 1.2463 0.4842 0.4782 0.039*
H10B 1.3383 0.5604 0.4277 0.039*
H10C 1.4959 0.4157 0.4473 0.039*
H1N3 0.803 (6) 0.317 (3) 0.3104 (11) 0.020 (7)*
H1N4 1.013 (6) 0.318 (3) 0.4291 (10) 0.021 (7)*
H1N1 0.123 (6) 0.039 (3) 0.2501 (11) 0.024 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0212 (3) 0.0194 (3) 0.0137 (3) 0.0002 (2) −0.0055 (2) 0.0021 (2)
O1 0.0248 (8) 0.0222 (9) 0.0117 (8) 0.0021 (7) −0.0052 (7) −0.0004 (7)
O2 0.0460 (12) 0.0433 (12) 0.0332 (11) −0.0198 (10) 0.0027 (9) 0.0087 (10)
O3 0.0335 (10) 0.0384 (11) 0.0183 (9) −0.0006 (8) −0.0046 (8) 0.0046 (8)
N1 0.0225 (10) 0.0215 (10) 0.0107 (10) 0.0014 (8) −0.0081 (8) −0.0037 (8)
N2 0.0173 (9) 0.0160 (9) 0.0135 (9) 0.0022 (7) −0.0039 (7) −0.0008 (8)
N3 0.0211 (10) 0.0193 (10) 0.0082 (9) 0.0007 (8) −0.0062 (7) 0.0012 (8)
N4 0.0221 (10) 0.0222 (11) 0.0111 (10) −0.0047 (8) −0.0055 (8) −0.0006 (8)
N5 0.0274 (11) 0.0227 (11) 0.0224 (11) 0.0017 (9) 0.0013 (9) 0.0036 (9)
C1 0.0173 (10) 0.0165 (11) 0.0153 (11) 0.0060 (9) −0.0047 (8) −0.0041 (9)
C2 0.0190 (11) 0.0189 (12) 0.0203 (12) 0.0019 (9) −0.0066 (9) −0.0068 (10)
C3 0.0216 (11) 0.0155 (11) 0.0258 (13) 0.0013 (9) −0.0015 (10) −0.0016 (10)
C4 0.0226 (11) 0.0186 (12) 0.0177 (12) 0.0045 (9) −0.0012 (9) 0.0010 (9)
C5 0.0183 (10) 0.0188 (12) 0.0176 (11) 0.0039 (9) −0.0037 (9) −0.0020 (9)
C6 0.0165 (10) 0.0170 (11) 0.0155 (11) 0.0037 (8) −0.0041 (9) −0.0034 (9)
C7 0.0175 (10) 0.0170 (11) 0.0111 (11) 0.0053 (8) −0.0043 (8) −0.0016 (9)
C8 0.0190 (11) 0.0182 (11) 0.0113 (11) 0.0049 (9) −0.0063 (8) −0.0032 (9)
C9 0.0174 (10) 0.0156 (11) 0.0152 (11) 0.0047 (9) −0.0048 (9) −0.0036 (9)
C10 0.0283 (13) 0.0315 (14) 0.0157 (12) −0.0081 (11) −0.0086 (10) −0.0036 (11)

Geometric parameters (Å, º)

S1—C9 1.675 (2) C1—C2 1.378 (3)
O1—C8 1.222 (3) C1—C6 1.410 (3)
O2—N5 1.227 (3) C2—C3 1.383 (3)
O3—N5 1.227 (3) C2—H2A 0.9500
N1—C8 1.359 (3) C3—C4 1.392 (3)
N1—C1 1.391 (3) C3—H3A 0.9500
N1—H1N1 0.81 (3) C4—C5 1.387 (3)
N2—C7 1.289 (3) C5—C6 1.382 (3)
N2—N3 1.346 (3) C5—H5A 0.9500
N3—C9 1.371 (3) C6—C7 1.446 (3)
N3—H1N3 0.84 (3) C7—C8 1.507 (3)
N4—C9 1.320 (3) C10—H10A 0.9800
N4—C10 1.454 (3) C10—H10B 0.9800
N4—H1N4 0.84 (3) C10—H10C 0.9800
N5—C4 1.460 (3)
C8—N1—C1 112.00 (19) C5—C4—N5 118.6 (2)
C8—N1—H1N1 123 (2) C3—C4—N5 117.8 (2)
C1—N1—H1N1 125 (2) C6—C5—C4 116.7 (2)
C7—N2—N3 115.95 (19) C6—C5—H5A 121.7
N2—N3—C9 121.06 (19) C4—C5—H5A 121.7
N2—N3—H1N3 120.3 (18) C5—C6—C1 120.1 (2)
C9—N3—H1N3 118.3 (18) C5—C6—C7 133.1 (2)
C9—N4—C10 122.9 (2) C1—C6—C7 106.81 (19)
C9—N4—H1N4 119.1 (19) N2—C7—C6 127.1 (2)
C10—N4—H1N4 117.7 (19) N2—C7—C8 126.5 (2)
O2—N5—O3 122.6 (2) C6—C7—C8 106.34 (19)
O2—N5—C4 118.3 (2) O1—C8—N1 127.4 (2)
O3—N5—C4 119.1 (2) O1—C8—C7 127.0 (2)
C2—C1—N1 128.5 (2) N1—C8—C7 105.67 (19)
C2—C1—C6 122.4 (2) N4—C9—N3 116.0 (2)
N1—C1—C6 109.2 (2) N4—C9—S1 125.82 (18)
C1—C2—C3 117.8 (2) N3—C9—S1 118.22 (17)
C1—C2—H2A 121.1 N4—C10—H10A 109.5
C3—C2—H2A 121.1 N4—C10—H10B 109.5
C2—C3—C4 119.5 (2) H10A—C10—H10B 109.5
C2—C3—H3A 120.2 N4—C10—H10C 109.5
C4—C3—H3A 120.2 H10A—C10—H10C 109.5
C5—C4—C3 123.6 (2) H10B—C10—H10C 109.5
C7—N2—N3—C9 177.82 (19) C2—C1—C6—C7 179.3 (2)
C8—N1—C1—C2 −178.9 (2) N1—C1—C6—C7 −0.7 (2)
C8—N1—C1—C6 1.1 (3) N3—N2—C7—C6 179.3 (2)
N1—C1—C2—C3 −179.9 (2) N3—N2—C7—C8 −0.4 (3)
C6—C1—C2—C3 0.0 (3) C5—C6—C7—N2 −0.5 (4)
C1—C2—C3—C4 0.3 (3) C1—C6—C7—N2 −179.7 (2)
C2—C3—C4—C5 −0.7 (4) C5—C6—C7—C8 179.3 (2)
C2—C3—C4—N5 −179.4 (2) C1—C6—C7—C8 0.1 (2)
O2—N5—C4—C5 172.4 (2) C1—N1—C8—O1 179.1 (2)
O3—N5—C4—C5 −7.9 (3) C1—N1—C8—C7 −1.0 (2)
O2—N5—C4—C3 −8.9 (3) N2—C7—C8—O1 0.2 (4)
O3—N5—C4—C3 170.8 (2) C6—C7—C8—O1 −179.6 (2)
C3—C4—C5—C6 0.8 (3) N2—C7—C8—N1 −179.7 (2)
N5—C4—C5—C6 179.5 (2) C6—C7—C8—N1 0.5 (2)
C4—C5—C6—C1 −0.5 (3) C10—N4—C9—N3 178.2 (2)
C4—C5—C6—C7 −179.5 (2) C10—N4—C9—S1 −0.9 (3)
C2—C1—C6—C5 0.1 (3) N2—N3—C9—N4 4.5 (3)
N1—C1—C6—C5 180.0 (2) N2—N3—C9—S1 −176.25 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O1 0.84 (3) 2.02 (3) 2.697 (2) 137 (3)
N1—H1N1···S1i 0.81 (3) 2.52 (3) 3.320 (2) 171 (3)
C2—H2A···O1ii 0.95 2.39 3.317 (3) 165
C10—H10A···O2iii 0.98 2.56 3.079 (3) 113

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5048).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. [DOI] [PubMed]
  3. Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593–2599.
  6. Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.
  7. Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609. [DOI] [PMC free article] [PubMed]
  8. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142. [DOI] [PMC free article] [PubMed]
  9. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477. [DOI] [PMC free article] [PubMed]
  10. Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  14. Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.
  15. Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001183/is5048sup1.cif

e-68-0o953-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001183/is5048Isup2.hkl

e-68-0o953-Isup2.hkl (133.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001183/is5048Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES