Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o955–o956. doi: 10.1107/S1600536812005417

(Z)-N-Methyl-2-(5-methyl-2-oxoindolin-3-yl­idene)hydrazinecarbothio­amide

Amna Qasem Ali a,b, Naser Eltaher Eltayeb c,, Siang Guan Teoh a,*, Abdussalam Salhin a, Hoong-Kun Fun d,§
PMCID: PMC3343935  PMID: 22590016

Abstract

In the title compound, C11H12N4OS, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, the mol­ecules form a helical chain along the a axis through an N—H⋯O hydrogen bond. These chains are extended by an N—H⋯S hydrogen bond and a C—H⋯π inter­action into a three-dimensional network.

Related literature  

For related structures, see: Ali et al. (2012); Qasem Ali et al. (2012, 2011a ,b ). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anti­cancer activities of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-68-0o955-scheme1.jpg

Experimental  

Crystal data  

  • C11H12N4OS

  • M r = 248.31

  • Orthorhombic, Inline graphic

  • a = 6.2826 (2) Å

  • b = 10.0341 (3) Å

  • c = 19.1315 (5) Å

  • V = 1206.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.51 × 0.18 × 0.13 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.879, T max = 0.967

  • 13743 measured reflections

  • 3780 independent reflections

  • 3463 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.097

  • S = 1.07

  • 3780 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), with 1584 Friedel pairs

  • Flack parameter: −0.08 (7)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005417/is5066sup1.cif

e-68-0o955-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005417/is5066Isup2.hkl

e-68-0o955-Isup2.hkl (185.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005417/is5066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.81 (2) 2.03 (2) 2.8319 (17) 171 (2)
N3—H1N3⋯O1 0.84 (2) 2.079 (19) 2.7525 (17) 136.9 (17)
N4—H1N4⋯S1ii 0.80 (2) 2.85 (2) 3.5538 (13) 148.5 (19)
C3—H3ACg2iii 0.95 2.62 3.4165 (16) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for an RU research grant (No. 1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

supplementary crystallographic information

Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-N-methyl-2-(5-nitro-2-oxoindolin-3-ylidene) hydrazinecarbothioamide (Ali et al., 2012). In the present paper we describe the single-crystal X-ray diffraction study of title compound.

In this compound (Fig. 1), the chain N2/N3/C9/S1/N4/C10 connects to the nine-membered 5-methylindolin-2-one ring system at C7. In this chain, C7/N2/N3/C9 and C10/N4/C9/S1 have torsion angles -176.69 (13) and -1.4 (2)°, respectively. The essentially planar conformation of the molecule is maintained by the cyclic intramolecular N3—H1N3···O1 hydrogen-bond (Table 1) [graph set S(6); Bernstein et al., 1995)]. In the crystal, the molecules form a helical chain through an intermolecular N1—H1N1···O1 hydrogen bond and are extended by an N4—H1N4···S1 hydrogen bond and a weak C3—H3A···Cg2 interaction into a three-dimensional network (Table 1, Fig. 2). Cg2 is the centroid of the C1–C6 ring.

Experimental

The Schiff base has been synthesized by refluxing the reaction mixture of hot ethanolic solution (30 ml) of 5-methyl-3-thiosemicarbazide (0.01 mol) and hot ethanolic solution (30 ml) of 5-methylisatin (0.01 mol) for 2 h. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH (yield 94%, m.p. 551.7–552.2 K). The yellow crystals were grown in acetone–DMF (3:1) by slow evaporation at room temperature.

Refinement

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic ring and C—H = 0.98 Å for methyl group, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for aromatic ring and methyl group, respectively. The highest residual electron density peak is located at 0.76 Å from C9 and the deepest hole is located at 0.16 Å from H11C.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H12N4OS Dx = 1.368 Mg m3
Mr = 248.31 Melting point = 551.7–552.2 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5511 reflections
a = 6.2826 (2) Å θ = 2.3–30.7°
b = 10.0341 (3) Å µ = 0.26 mm1
c = 19.1315 (5) Å T = 100 K
V = 1206.05 (6) Å3 Block, orange
Z = 4 0.51 × 0.18 × 0.13 mm
F(000) = 520

Data collection

Bruker APEXII CCD diffractometer 3780 independent reflections
Radiation source: fine-focus sealed tube 3463 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
φ and ω scans θmax = 31.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→9
Tmin = 0.879, Tmax = 0.967 k = −14→13
13743 measured reflections l = −26→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2287P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3780 reflections Δρmax = 0.32 e Å3
168 parameters Δρmin = −0.24 e Å3
0 restraints Absolute structure: Flack (1983), with 1584 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.08 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.25429 (6) 0.29169 (3) 0.213725 (19) 0.02077 (10)
O1 0.31886 (18) 0.26735 (11) 0.06564 (6) 0.0214 (2)
N1 0.6103 (2) 0.39581 (13) 0.03384 (7) 0.0191 (3)
N2 0.2245 (2) 0.50945 (11) 0.15475 (6) 0.0159 (2)
N3 0.0861 (2) 0.40757 (13) 0.16284 (7) 0.0171 (2)
N4 −0.1126 (2) 0.54025 (13) 0.23530 (7) 0.0181 (2)
C1 0.6888 (2) 0.52394 (15) 0.05069 (8) 0.0170 (3)
C2 0.8718 (2) 0.58576 (17) 0.02731 (8) 0.0206 (3)
H2A 0.9661 0.5427 −0.0042 0.025*
C3 0.9124 (2) 0.71447 (17) 0.05206 (8) 0.0217 (3)
H3A 1.0386 0.7586 0.0374 0.026*
C4 0.7740 (2) 0.78049 (15) 0.09758 (7) 0.0202 (3)
C5 0.5903 (2) 0.71534 (15) 0.12059 (7) 0.0175 (3)
H5A 0.4945 0.7585 0.1516 0.021*
C6 0.5498 (2) 0.58673 (15) 0.09747 (7) 0.0157 (3)
C7 0.3812 (2) 0.49169 (14) 0.11202 (7) 0.0158 (3)
C8 0.4287 (2) 0.37009 (15) 0.06883 (8) 0.0175 (3)
C9 −0.0900 (2) 0.42245 (14) 0.20479 (7) 0.0163 (3)
C10 −0.2903 (2) 0.57322 (17) 0.28065 (9) 0.0246 (3)
H10A −0.3009 0.6702 0.2853 0.037*
H10B −0.2675 0.5333 0.3268 0.037*
H10C −0.4223 0.5383 0.2604 0.037*
C11 0.8227 (3) 0.92103 (18) 0.12193 (9) 0.0288 (4)
H11A 0.9767 0.9361 0.1204 0.043*
H11B 0.7716 0.9327 0.1699 0.043*
H11C 0.7511 0.9851 0.0912 0.043*
H1N1 0.675 (4) 0.345 (2) 0.0091 (12) 0.030 (6)*
H1N3 0.105 (3) 0.337 (2) 0.1401 (10) 0.022 (5)*
H1N4 −0.027 (4) 0.598 (2) 0.2289 (11) 0.028 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01781 (16) 0.01833 (15) 0.02616 (18) −0.00367 (14) 0.00191 (16) 0.00281 (13)
O1 0.0245 (5) 0.0189 (5) 0.0207 (5) −0.0035 (4) −0.0012 (4) −0.0036 (4)
N1 0.0210 (6) 0.0189 (6) 0.0173 (6) 0.0018 (5) 0.0025 (5) −0.0022 (5)
N2 0.0162 (6) 0.0145 (5) 0.0171 (5) −0.0021 (4) −0.0010 (5) 0.0021 (4)
N3 0.0167 (6) 0.0147 (5) 0.0200 (6) −0.0019 (5) 0.0022 (5) −0.0016 (4)
N4 0.0145 (5) 0.0195 (6) 0.0204 (6) −0.0004 (5) 0.0015 (5) −0.0009 (5)
C1 0.0175 (6) 0.0185 (6) 0.0149 (6) 0.0012 (5) −0.0009 (5) 0.0020 (5)
C2 0.0171 (7) 0.0255 (7) 0.0191 (7) 0.0031 (6) 0.0023 (5) 0.0038 (6)
C3 0.0162 (6) 0.0277 (7) 0.0213 (7) −0.0036 (6) −0.0010 (5) 0.0069 (6)
C4 0.0211 (7) 0.0220 (6) 0.0174 (6) −0.0062 (6) −0.0035 (5) 0.0031 (5)
C5 0.0180 (6) 0.0185 (6) 0.0161 (6) −0.0013 (6) −0.0002 (5) 0.0003 (5)
C6 0.0148 (6) 0.0184 (6) 0.0140 (6) 0.0005 (5) −0.0001 (5) 0.0013 (5)
C7 0.0167 (6) 0.0164 (6) 0.0143 (6) −0.0005 (5) −0.0021 (5) −0.0008 (5)
C8 0.0197 (7) 0.0175 (6) 0.0154 (6) 0.0015 (5) −0.0018 (5) −0.0015 (5)
C9 0.0151 (6) 0.0170 (6) 0.0169 (6) 0.0004 (5) −0.0026 (5) 0.0019 (5)
C10 0.0195 (7) 0.0294 (7) 0.0251 (7) 0.0036 (6) 0.0031 (6) −0.0041 (6)
C11 0.0322 (8) 0.0273 (8) 0.0271 (8) −0.0129 (7) −0.0012 (7) −0.0017 (7)

Geometric parameters (Å, º)

S1—C9 1.6781 (15) C2—H2A 0.9500
O1—C8 1.2419 (18) C3—C4 1.398 (2)
N1—C8 1.348 (2) C3—H3A 0.9500
N1—C1 1.414 (2) C4—C5 1.398 (2)
N1—H1N1 0.81 (2) C4—C11 1.516 (2)
N2—C7 1.2920 (19) C5—C6 1.388 (2)
N2—N3 1.3510 (17) C5—H5A 0.9500
N3—C9 1.3749 (19) C6—C7 1.452 (2)
N3—H1N3 0.84 (2) C7—C8 1.503 (2)
N4—C9 1.3259 (19) C10—H10A 0.9800
N4—C10 1.4520 (19) C10—H10B 0.9800
N4—H1N4 0.80 (2) C10—H10C 0.9800
C1—C2 1.381 (2) C11—H11A 0.9800
C1—C6 1.400 (2) C11—H11B 0.9800
C2—C3 1.399 (2) C11—H11C 0.9800
C8—N1—C1 110.85 (13) C5—C6—C1 120.52 (14)
C8—N1—H1N1 127.0 (16) C5—C6—C7 133.10 (14)
C1—N1—H1N1 122.0 (16) C1—C6—C7 106.37 (13)
C7—N2—N3 117.30 (12) N2—C7—C6 125.90 (13)
N2—N3—C9 120.18 (12) N2—C7—C8 127.65 (13)
N2—N3—H1N3 119.1 (15) C6—C7—C8 106.44 (12)
C9—N3—H1N3 120.6 (15) O1—C8—N1 127.21 (14)
C9—N4—C10 123.25 (13) O1—C8—C7 126.20 (13)
C9—N4—H1N4 120.3 (16) N1—C8—C7 106.59 (13)
C10—N4—H1N4 116.4 (16) N4—C9—N3 116.09 (13)
C2—C1—C6 121.61 (15) N4—C9—S1 125.91 (11)
C2—C1—N1 128.67 (15) N3—C9—S1 118.00 (11)
C6—C1—N1 109.72 (13) N4—C10—H10A 109.5
C1—C2—C3 117.20 (15) N4—C10—H10B 109.5
C1—C2—H2A 121.4 H10A—C10—H10B 109.5
C3—C2—H2A 121.4 N4—C10—H10C 109.5
C4—C3—C2 122.33 (14) H10A—C10—H10C 109.5
C4—C3—H3A 118.8 H10B—C10—H10C 109.5
C2—C3—H3A 118.8 C4—C11—H11A 109.5
C3—C4—C5 119.23 (14) C4—C11—H11B 109.5
C3—C4—C11 120.45 (14) H11A—C11—H11B 109.5
C5—C4—C11 120.31 (15) C4—C11—H11C 109.5
C6—C5—C4 119.07 (14) H11A—C11—H11C 109.5
C6—C5—H5A 120.5 H11B—C11—H11C 109.5
C4—C5—H5A 120.5
C7—N2—N3—C9 −176.69 (13) N3—N2—C7—C6 −178.16 (13)
C8—N1—C1—C2 178.42 (15) N3—N2—C7—C8 0.6 (2)
C8—N1—C1—C6 −1.59 (17) C5—C6—C7—N2 −2.0 (3)
C6—C1—C2—C3 −0.3 (2) C1—C6—C7—N2 177.54 (14)
N1—C1—C2—C3 179.68 (14) C5—C6—C7—C8 178.97 (15)
C1—C2—C3—C4 −1.1 (2) C1—C6—C7—C8 −1.48 (15)
C2—C3—C4—C5 1.3 (2) C1—N1—C8—O1 179.56 (15)
C2—C3—C4—C11 −178.82 (15) C1—N1—C8—C7 0.58 (16)
C3—C4—C5—C6 −0.1 (2) N2—C7—C8—O1 2.6 (2)
C11—C4—C5—C6 −179.99 (14) C6—C7—C8—O1 −178.43 (14)
C4—C5—C6—C1 −1.2 (2) N2—C7—C8—N1 −178.43 (14)
C4—C5—C6—C7 178.28 (15) C6—C7—C8—N1 0.57 (16)
C2—C1—C6—C5 1.5 (2) C10—N4—C9—N3 179.39 (14)
N1—C1—C6—C5 −178.51 (13) C10—N4—C9—S1 −1.4 (2)
C2—C1—C6—C7 −178.14 (13) N2—N3—C9—N4 0.19 (19)
N1—C1—C6—C7 1.87 (16) N2—N3—C9—S1 −179.14 (10)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.81 (2) 2.03 (2) 2.8319 (17) 171 (2)
N3—H1N3···O1 0.84 (2) 2.079 (19) 2.7525 (17) 136.9 (17)
N4—H1N4···S1ii 0.80 (2) 2.85 (2) 3.5538 (13) 148.5 (19)
C3—H3A···Cg2iii 0.95 2.62 3.4165 (16) 142

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x, y+1/2, −z+1/2; (iii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5066).

References

  1. Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285–o286. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. [DOI] [PubMed]
  4. Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.
  8. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142. [DOI] [PMC free article] [PubMed]
  9. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477. [DOI] [PMC free article] [PubMed]
  10. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o953–o954. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  14. Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.
  15. Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anticancer Agents Med. Chem. 9, 397–414. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005417/is5066sup1.cif

e-68-0o955-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005417/is5066Isup2.hkl

e-68-0o955-Isup2.hkl (185.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005417/is5066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES