Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o958. doi: 10.1107/S160053681200606X

N-Cyclo­pentyl-N-(3-oxo-2,3-dihydro-1H-inden-1-yl)acetamide

Tao Zhang a,b, Tom McCabe c, Bartosz Marzec c, Neil Frankish a, Helen Sheridan a,*
PMCID: PMC3343937  PMID: 22590018

Abstract

The title mol­ecule, C16H19NO2, consists of an indane moiety, which is connected through an N atom to an acetamide group and a cyclo­pentane ring. The N atom adopts planar triangular geometry. Inter­molecular inter­actions, such as π–π stacking or hydrogen bonding, were not observed.

Related literature  

For background information on the indane pharmacophore, see: Vaccva et al. (1994); Buckle et al. (1973); Heinzelmann et al. (1940). For details of the pharmacological activity of the title compound, see: Sheridan et al. (1990, 1999a ,b , 2008); Frankish et al. (2004). For ionization characteristics, see: Simplício et al. (2004).graphic file with name e-68-0o958-scheme1.jpg

Experimental  

Crystal data  

  • C16H19NO2

  • M r = 257.32

  • Triclinic, Inline graphic

  • a = 8.1539 (16) Å

  • b = 8.9944 (18) Å

  • c = 10.084 (2) Å

  • α = 87.97 (3)°

  • β = 81.29 (3)°

  • γ = 63.15 (3)°

  • V = 651.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.60 × 0.50 × 0.30 mm

Data collection  

  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2006) T min = 0.726, T max = 1.000

  • 7260 measured reflections

  • 2191 independent reflections

  • 2157 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.100

  • S = 1.13

  • 2191 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200606X/hg5169sup1.cif

e-68-0o958-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200606X/hg5169Isup2.hkl

e-68-0o958-Isup2.hkl (107.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200606X/hg5169Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support of this study by Enterprise Ireland (grant No. PC/2008/0008) and thank colleagues at the Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, for their input.

supplementary crystallographic information

Comment

The indane pharmacophore occurs in many different bioactive molecules. Indinavir, a HIV-1 inhibitor is a protease inhibitor in clinical use that contains an indane fragment (Vaccva et al., 1994). Nivemedone, a nitro-indanone has anti-allergenic activity (Buckle et al., 1973) while many simple indanols demonstrate bronchodilatory activity (Heinzelmann et al., 1940). We have demonstrated that indanone derivatives possess smooth muscle relaxant activity and inhibit mediator release (Sheridan et al., 1990, 1999a, 1999b; Frankish et al., 2004). In a recent study on bioactivity we evaluated the smooth muscle relaxant activity and mediator release inhibition activities demonstrated by a series of aminoindanones (Simplício et al., 2004; Sheridan et al., 2008).

The asymmetric unit of the compound presented in this paper contains a single molecule of N-cyclopentyl-N-(3-oxo-2,3-dihydro-1H -inden-1-yl)acetamide. The geometry around the nitrogen atom can be best described as trigonal planar. As there are no flexible hydrogen atoms attached to the nitrogen atom N1 or the oxygen atoms (O1 and O2) hydrogen bonding do not prevail in the title compound. The shortest distance between the aromatic rings is 4.150 (9) Å and cannot be considered as the π-π stacking interaction.

The packing diagram of the structure, presented in Fig. 2, shows that the molecules are separated and when viewed along the crystallographic a-axis seem to form a sheet-like structure in the ab-plane. These sheets pack in the direction of the crystallographic c-axis. The shortest separation distance between them is 4.243 (75) Å and a weak Van der Vaals force or an electrostatic interaction may be responsible for holding the sheets together.

Experimental

The title compound was synthesized as reported (Sheridan et al., 2008). N-Bromosuccinimide (672 mg, 3.78 mmol) and a catalytic amount of dibenzoylperoxide were added to a solution of indan-1-one (500 mg, 3.78 mmol) in CCl4 (15 ml) and the reaction was refluxed for 45 min. After cooling, the reaction was washed with water, dried over Na2SO4, filtered and evaporated in vacuo. The resultant was purified by column chromatography over silica gel (eluant, pet. ether:EtOAc, 4:1) to yield 3-bromoindan-1-one as an oil. To this 3-bromoindan-1-one solution (200 mg, 0.95 mmol) in dry DCM was added cyclopentanamine (80 mg, 0.94 mmol) and triethylamine (200 mg, 1.98 mmol). The reaction was stirred at 0°C for 3 h. The solvent was removed in vacuo and the residue was purified directly by flash column chromatography on silica gel (eluant, pet. ether:EtOAc, 4:1). After evaporation of the eluent the secondary amine was isolated as an oil (175 mg, 86%). To this secondary amine solution (700 mg, 3.25 mmol) in DCM (5 ml) was added triethylamine (657 mg, 0.90 ml, 6.51 mmol), acetic anhydride (664 mg, 0.61 ml, 6.51 mmol) and DMAP (476 mg, 3.90 mmol). The reaction was stirred at room temperature for 2 h. The reaction mixture was then washed with water, dried over Na2SO4, filtered and evaporated in vacuo. The residue was purified by column chromatography over silica gel (pet. ether:EtOAc, 4:1) to yield the title compound as a white solid (450 mg, 54%). Crystals suitable for X-ray diffraction were obtained after 5 days of slow evaporation of an ethanol solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for CH3 type H atoms, 0.97 Å for CH2 type H atoms and 0.98 Å for CH type H atoms, respectively. Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C)for the rest of the H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the crystallographic a-axis.

Crystal data

C16H19NO2 Z = 2
Mr = 257.32 F(000) = 276
Triclinic, P1 Dx = 1.311 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1539 (16) Å Cell parameters from 2546 reflections
b = 8.9944 (18) Å θ = 2.0–31.2°
c = 10.084 (2) Å µ = 0.09 mm1
α = 87.97 (3)° T = 150 K
β = 81.29 (3)° Prism, colourless
γ = 63.15 (3)° 0.60 × 0.50 × 0.30 mm
V = 651.8 (2) Å3

Data collection

Rigaku Saturn 724 diffractometer 2191 independent reflections
Radiation source: fine-focus sealed tube 2157 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 28.5714 pixels mm-1 θmax = 25.0°, θmin = 2.8°
ω and phi scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2006) k = −10→8
Tmin = 0.726, Tmax = 1.000 l = −11→11
7260 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3106P] where P = (Fo2 + 2Fc2)/3
2191 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The su's on the Cell Angles were measured.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.31603 (15) 0.52993 (14) 0.35282 (11) 0.0247 (3)
N1 0.26193 (16) 0.31399 (15) 0.30730 (12) 0.0180 (3)
C12 0.3026 (2) 0.13741 (18) 0.31299 (14) 0.0178 (3)
H12 0.4075 0.0812 0.3627 0.021*
C5 0.15437 (19) 0.51234 (18) 0.12014 (14) 0.0178 (3)
C9 0.10493 (19) 0.42530 (18) 0.24012 (14) 0.0182 (3)
H9 0.0535 0.3566 0.2071 0.022*
C6 0.0277 (2) 0.67950 (19) 0.12237 (14) 0.0188 (3)
C10 0.3582 (2) 0.38022 (19) 0.36131 (14) 0.0191 (3)
C4 0.2976 (2) 0.4435 (2) 0.01256 (15) 0.0221 (3)
H4 0.3821 0.3311 0.0095 0.027*
C7 −0.1091 (2) 0.72363 (19) 0.24640 (15) 0.0199 (3)
C11 0.5168 (2) 0.2668 (2) 0.43334 (16) 0.0245 (4)
H11A 0.5711 0.3301 0.4669 0.037*
H11B 0.6092 0.1799 0.3720 0.037*
H11C 0.4709 0.2182 0.5069 0.037*
C1 0.0406 (2) 0.7826 (2) 0.01944 (15) 0.0226 (3)
H1 −0.0454 0.8945 0.0219 0.027*
C16 0.1404 (2) 0.10622 (19) 0.38594 (15) 0.0222 (3)
H16A 0.1517 0.0863 0.4801 0.027*
H16B 0.0218 0.2016 0.3793 0.027*
C13 0.3576 (2) 0.04558 (19) 0.17613 (14) 0.0205 (3)
H13A 0.2763 0.1118 0.1132 0.025*
H13B 0.4852 0.0175 0.1386 0.025*
C3 0.3120 (2) 0.5459 (2) −0.09033 (15) 0.0245 (4)
H3 0.4079 0.5014 −0.1624 0.029*
C14 0.3337 (2) −0.11046 (19) 0.21048 (15) 0.0227 (3)
H14A 0.4397 −0.1927 0.2482 0.027*
H14B 0.3200 −0.1595 0.1313 0.027*
C2 0.1849 (2) 0.7143 (2) −0.08713 (15) 0.0251 (4)
H2 0.1969 0.7811 −0.1566 0.030*
C8 −0.0572 (2) 0.56929 (19) 0.32894 (15) 0.0223 (3)
H8A −0.1624 0.5451 0.3517 0.027*
H8B −0.0181 0.5849 0.4113 0.027*
C15 0.1556 (2) −0.04907 (19) 0.31440 (16) 0.0242 (4)
H15A 0.1640 −0.1346 0.3782 0.029*
H15B 0.0478 −0.0206 0.2704 0.029*
O1 −0.24001 (15) 0.85977 (14) 0.27869 (11) 0.0280 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0310 (6) 0.0181 (7) 0.0266 (6) −0.0122 (5) −0.0055 (5) 0.0010 (4)
N1 0.0186 (6) 0.0145 (7) 0.0187 (6) −0.0058 (5) −0.0023 (5) 0.0003 (5)
C12 0.0196 (7) 0.0130 (8) 0.0187 (7) −0.0058 (6) −0.0016 (6) 0.0001 (6)
C5 0.0174 (7) 0.0187 (8) 0.0181 (7) −0.0083 (6) −0.0052 (5) 0.0009 (6)
C9 0.0168 (7) 0.0159 (8) 0.0192 (7) −0.0055 (6) −0.0011 (5) −0.0003 (6)
C6 0.0187 (7) 0.0180 (8) 0.0213 (7) −0.0083 (6) −0.0072 (6) 0.0007 (6)
C10 0.0206 (7) 0.0199 (9) 0.0154 (7) −0.0089 (6) 0.0008 (5) −0.0016 (6)
C4 0.0209 (7) 0.0201 (9) 0.0225 (8) −0.0071 (6) −0.0021 (6) −0.0006 (6)
C7 0.0164 (7) 0.0190 (9) 0.0235 (8) −0.0063 (6) −0.0054 (6) −0.0029 (6)
C11 0.0248 (8) 0.0229 (9) 0.0271 (8) −0.0108 (7) −0.0072 (6) −0.0002 (6)
C1 0.0235 (8) 0.0192 (8) 0.0266 (8) −0.0096 (6) −0.0092 (6) 0.0030 (6)
C16 0.0236 (8) 0.0196 (9) 0.0212 (7) −0.0092 (7) 0.0017 (6) −0.0008 (6)
C13 0.0188 (7) 0.0199 (9) 0.0192 (7) −0.0061 (6) −0.0007 (6) −0.0021 (6)
C3 0.0239 (8) 0.0313 (10) 0.0192 (8) −0.0136 (7) −0.0019 (6) 0.0000 (6)
C14 0.0220 (8) 0.0186 (9) 0.0255 (8) −0.0071 (7) −0.0032 (6) −0.0044 (6)
C2 0.0306 (8) 0.0299 (10) 0.0211 (8) −0.0181 (8) −0.0091 (6) 0.0079 (6)
C8 0.0189 (7) 0.0206 (9) 0.0218 (8) −0.0051 (6) 0.0008 (6) −0.0015 (6)
C15 0.0235 (8) 0.0183 (9) 0.0304 (8) −0.0098 (7) −0.0010 (6) −0.0012 (6)
O1 0.0219 (6) 0.0211 (7) 0.0327 (6) −0.0026 (5) −0.0025 (5) −0.0031 (5)

Geometric parameters (Å, º)

O2—C10 1.2334 (19) C11—H11B 0.9600
N1—C10 1.3571 (19) C11—H11C 0.9600
N1—C9 1.4687 (19) C1—C2 1.389 (2)
N1—C12 1.470 (2) C1—H1 0.9300
C12—C13 1.532 (2) C16—C15 1.541 (2)
C12—C16 1.548 (2) C16—H16A 0.9700
C12—H12 0.9800 C16—H16B 0.9700
C5—C6 1.386 (2) C13—C14 1.523 (2)
C5—C4 1.391 (2) C13—H13A 0.9700
C5—C9 1.520 (2) C13—H13B 0.9700
C9—C8 1.551 (2) C3—C2 1.394 (2)
C9—H9 0.9800 C3—H3 0.9300
C6—C1 1.391 (2) C14—C15 1.539 (2)
C6—C7 1.476 (2) C14—H14A 0.9700
C10—C11 1.511 (2) C14—H14B 0.9700
C4—C3 1.390 (2) C2—H2 0.9300
C4—H4 0.9300 C8—H8A 0.9700
C7—O1 1.2196 (19) C8—H8B 0.9700
C7—C8 1.514 (2) C15—H15A 0.9700
C11—H11A 0.9600 C15—H15B 0.9700
C10—N1—C9 118.39 (12) C6—C1—H1 120.8
C10—N1—C12 124.30 (12) C15—C16—C12 105.69 (12)
C9—N1—C12 117.30 (12) C15—C16—H16A 110.6
N1—C12—C13 114.87 (12) C12—C16—H16A 110.6
N1—C12—C16 114.41 (12) C15—C16—H16B 110.6
C13—C12—C16 105.21 (12) C12—C16—H16B 110.6
N1—C12—H12 107.3 H16A—C16—H16B 108.7
C13—C12—H12 107.3 C14—C13—C12 102.50 (12)
C16—C12—H12 107.3 C14—C13—H13A 111.3
C6—C5—C4 120.02 (14) C12—C13—H13A 111.3
C6—C5—C9 111.41 (13) C14—C13—H13B 111.3
C4—C5—C9 128.47 (14) C12—C13—H13B 111.3
N1—C9—C5 115.14 (12) H13A—C13—H13B 109.2
N1—C9—C8 115.99 (12) C4—C3—C2 120.98 (15)
C5—C9—C8 103.95 (12) C4—C3—H3 119.5
N1—C9—H9 107.1 C2—C3—H3 119.5
C5—C9—H9 107.1 C13—C14—C15 104.59 (12)
C8—C9—H9 107.1 C13—C14—H14A 110.8
C5—C6—C1 121.56 (14) C15—C14—H14A 110.8
C5—C6—C7 110.07 (13) C13—C14—H14B 110.8
C1—C6—C7 128.36 (14) C15—C14—H14B 110.8
O2—C10—N1 120.77 (14) H14A—C14—H14B 108.9
O2—C10—C11 120.75 (13) C1—C2—C3 120.27 (15)
N1—C10—C11 118.48 (13) C1—C2—H2 119.9
C3—C4—C5 118.77 (15) C3—C2—H2 119.9
C3—C4—H4 120.6 C7—C8—C9 106.08 (12)
C5—C4—H4 120.6 C7—C8—H8A 110.5
O1—C7—C6 126.77 (15) C9—C8—H8A 110.5
O1—C7—C8 125.44 (14) C7—C8—H8B 110.5
C6—C7—C8 107.79 (13) C9—C8—H8B 110.5
C10—C11—H11A 109.5 H8A—C8—H8B 108.7
C10—C11—H11B 109.5 C14—C15—C16 105.85 (12)
H11A—C11—H11B 109.5 C14—C15—H15A 110.6
C10—C11—H11C 109.5 C16—C15—H15A 110.6
H11A—C11—H11C 109.5 C14—C15—H15B 110.6
H11B—C11—H11C 109.5 C16—C15—H15B 110.6
C2—C1—C6 118.40 (15) H15A—C15—H15B 108.7
C2—C1—H1 120.8
C10—N1—C12—C13 −118.48 (15) C9—C5—C4—C3 176.96 (14)
C9—N1—C12—C13 62.40 (16) C5—C6—C7—O1 −179.07 (14)
C10—N1—C12—C16 119.67 (15) C1—C6—C7—O1 2.3 (2)
C9—N1—C12—C16 −59.45 (16) C5—C6—C7—C8 1.59 (16)
C10—N1—C9—C5 60.63 (17) C1—C6—C7—C8 −177.04 (14)
C12—N1—C9—C5 −120.20 (14) C5—C6—C1—C2 −0.1 (2)
C10—N1—C9—C8 −61.05 (17) C7—C6—C1—C2 178.36 (14)
C12—N1—C9—C8 118.12 (14) N1—C12—C16—C15 147.25 (12)
C6—C5—C9—N1 −135.65 (13) C13—C12—C16—C15 20.25 (16)
C4—C5—C9—N1 48.1 (2) N1—C12—C13—C14 −163.79 (12)
C6—C5—C9—C8 −7.66 (16) C16—C12—C13—C14 −37.07 (15)
C4—C5—C9—C8 176.08 (14) C5—C4—C3—C2 −0.6 (2)
C4—C5—C6—C1 −0.7 (2) C12—C13—C14—C15 39.78 (15)
C9—C5—C6—C1 −177.28 (13) C6—C1—C2—C3 0.6 (2)
C4—C5—C6—C7 −179.41 (12) C4—C3—C2—C1 −0.2 (2)
C9—C5—C6—C7 3.98 (16) O1—C7—C8—C9 174.40 (14)
C9—N1—C10—O2 −0.8 (2) C6—C7—C8—C9 −6.25 (16)
C12—N1—C10—O2 −179.91 (12) N1—C9—C8—C7 135.64 (13)
C9—N1—C10—C11 178.57 (12) C5—C9—C8—C7 8.18 (15)
C12—N1—C10—C11 −0.5 (2) C13—C14—C15—C16 −27.47 (16)
C6—C5—C4—C3 1.0 (2) C12—C16—C15—C14 4.32 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5169).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Buckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334–1339. [DOI] [PubMed]
  3. Frankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423–1427. [DOI] [PubMed]
  4. Heinzelmann, R., Kolloff, H. & Hunter, J. (1940). J. Org. Chem. 14, 907–910.
  5. Rigaku (2006). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheridan, H., Butterly, S., Walsh, J. J., Cogan, C., Jordan, M., Nolan, O. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248–254. [DOI] [PubMed]
  8. Sheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953–966. [DOI] [PubMed]
  9. Sheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271–272. [DOI] [PubMed]
  10. Sheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603–608.
  11. Simplício, A., Gilmer, J., Frankish, N., Sheridan, H., Walsh, J. & Clancy, J. (2004). J. Chromatogr. A, 1045, 233–238. [DOI] [PubMed]
  12. Vaccva, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096–4100. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200606X/hg5169sup1.cif

e-68-0o958-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200606X/hg5169Isup2.hkl

e-68-0o958-Isup2.hkl (107.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200606X/hg5169Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES