Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o962–o963. doi: 10.1107/S160053681200400X

(Z)-2-(2-Oxoindolin-3-yl­idene)-N-phenylhydrazinecarbothio­amide

Amna Qasem Ali a,b, Naser Eltaher Eltayeb c,, Siang Guan Teoh a,*, Abdussalam Salhin a, Hoong-Kun Fun d,§
PMCID: PMC3343940  PMID: 22590021

Abstract

In the title compound, C15H12N4OS, the dihedral angle between the nine-membered indolin-2-one ring system and the phenyl ring is 2.72 (7)°. Intra­molecular cyclic N—H⋯O and C—H⋯S hydrogen-bonding inter­actions [graph set S(6)] are present, as are weak N—H⋯N inter­actions [graph set S(5)]. In the crystal, mol­ecules form centrosymmetric cyclic dimers through pairs of N—H⋯O hydrogen bonds [graph set R 2 2(8)] and these are extended by C—H⋯S inter­actions. The crystal structure also features weak C—H⋯π inter­actions.

Related literature  

For related crystal structures, see: Ali et al. (2012); Qasem Ali et al. (2011a ,b ); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anti­cancer activities of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see Bernstein et al. (1995).graphic file with name e-68-0o962-scheme1.jpg

Experimental  

Crystal data  

  • C15H12N4OS

  • M r = 296.35

  • Monoclinic, Inline graphic

  • a = 6.3674 (1) Å

  • b = 15.4594 (3) Å

  • c = 14.2199 (3) Å

  • β = 93.383 (1)°

  • V = 1397.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.47 × 0.13 × 0.13 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.897, T max = 0.971

  • 15557 measured reflections

  • 4159 independent reflections

  • 2985 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.113

  • S = 1.02

  • 4159 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200400X/wn2464sup1.cif

e-68-0o962-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200400X/wn2464Isup2.hkl

e-68-0o962-Isup2.hkl (203.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200400X/wn2464Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.88 (2) 2.00 (2) 2.8737 (18) 173.9 (18)
N3—H1N3⋯O1 0.87 (2) 2.07 (2) 2.7646 (18) 136 (2)
N4—H1N4⋯N2 0.88 (2) 2.05 (2) 2.5781 (19) 117.4 (17)
C11—H11A⋯S1ii 0.95 2.83 3.6017 (19) 139
C15—H15A⋯S1 0.95 2.60 3.2735 (19) 128
C2—H2ACg3iii 0.95 2.80 3.510 (2) 132
C13—H13ACg2iv 0.95 2.82 3.5201 (19) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholar­ship.

supplementary crystallographic information

Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. The biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), antidepressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011a). In the present paper we describe the single-crystal X-ray diffraction study of the title compound (Fig. 1).

In the title compound, C15H12N4OS, the dihedral angle between the nine-membered indolin-2-one ring system and the phenyl ring is 2.72 (7)°. These two ring systems are connected by a chain of four atoms N2—N3—C9—N4; this torsion angle is 4.1 (2)°. The torsion angles C7—N2—N3—C9 and C10—N4—C9—N3 are 173.69 (15)° and 174.00 (16)°, respectively. These values are very close to those in a similar structure (Qasem Ali et al., 2011a).

The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H1N3···O1 and C15—H15A···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1), together with a weak S(5) N4—H1N4···N2 interaction.

In the crystal structure, the molecules form centrosymmetric cyclic dimers through intermolecular N1—H1N1···O1 hydrogen bonds [graph set R22(8)] and are extended by C11—H11A···S1 hydrogen bond interactions.

The crystal structure (Fig. 2) is stabilized by weak C—H···π interactions (Table 1) involving the C10–C15 ring (centroid Cg3) and C1–C6 ring (centroid Cg2).

Experimental

The Schiff base has been synthesized by refluxing the reaction mixture of a hot ethanolic solution (30 ml) of 4-phenyl-3-thiosemicarbazide (0.01 mol) and a hot ethanolic solution (30 ml) of isatin (0.01 mol) for 2 h. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH. Yield (m.p.): 90% (510.2–511.6 K). The yellow crystals were grown in acetone–dimethylformamide (3:1) by slow evaporation at room temperature.

Refinement

N-bound H atoms were located in a difference Fourier map and were refined freely; N—H = 0.87 (2) Å and 0.88 (2) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C15H12N4OS F(000) = 616
Mr = 296.35 Dx = 1.409 Mg m3
Monoclinic, P21/c Melting point = 510.2–511.6 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 6.3674 (1) Å Cell parameters from 4743 reflections
b = 15.4594 (3) Å θ = 3.0–30.1°
c = 14.2199 (3) Å µ = 0.24 mm1
β = 93.383 (1)° T = 100 K
V = 1397.31 (5) Å3 Needle, yellow
Z = 4 0.47 × 0.13 × 0.13 mm

Data collection

Bruker APEXII CCD diffractometer 4159 independent reflections
Radiation source: fine-focus sealed tube 2985 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
φ and ω scans θmax = 30.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→8
Tmin = 0.897, Tmax = 0.971 k = −21→18
15557 measured reflections l = −17→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 0.7736P] where P = (Fo2 + 2Fc2)/3
4159 reflections (Δ/σ)max = 0.001
202 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15701 (8) 0.72368 (4) 1.06040 (3) 0.03145 (15)
O1 0.73491 (19) 0.55698 (8) 1.00760 (8) 0.0228 (3)
N1 0.9075 (2) 0.50533 (10) 0.87950 (10) 0.0208 (3)
N2 0.4169 (2) 0.61290 (9) 0.85318 (10) 0.0177 (3)
N3 0.3689 (2) 0.63773 (9) 0.94027 (10) 0.0191 (3)
N4 0.0843 (2) 0.70518 (9) 0.87089 (10) 0.0181 (3)
C1 0.8690 (3) 0.50379 (11) 0.78102 (12) 0.0195 (4)
C2 0.9950 (3) 0.47108 (12) 0.71370 (13) 0.0241 (4)
H2A 1.1264 0.4445 0.7306 0.029*
C3 0.9210 (3) 0.47880 (12) 0.61995 (13) 0.0253 (4)
H3A 1.0027 0.4560 0.5719 0.030*
C4 0.7296 (3) 0.51916 (12) 0.59478 (13) 0.0231 (4)
H4A 0.6846 0.5243 0.5301 0.028*
C5 0.6042 (3) 0.55185 (11) 0.66319 (12) 0.0206 (4)
H5A 0.4741 0.5794 0.6462 0.025*
C6 0.6740 (3) 0.54324 (11) 0.75712 (12) 0.0184 (4)
C7 0.5904 (3) 0.57114 (11) 0.84497 (12) 0.0176 (3)
C8 0.7491 (3) 0.54476 (11) 0.92218 (12) 0.0188 (4)
C9 0.1964 (3) 0.68962 (11) 0.95214 (12) 0.0185 (4)
C10 −0.1096 (3) 0.74787 (11) 0.85012 (12) 0.0168 (3)
C11 −0.1753 (3) 0.74938 (11) 0.75467 (12) 0.0190 (4)
H11A −0.0892 0.7245 0.7095 0.023*
C12 −0.3656 (3) 0.78705 (11) 0.72568 (13) 0.0237 (4)
H12A −0.4098 0.7878 0.6607 0.028*
C13 −0.4917 (3) 0.82369 (11) 0.79112 (13) 0.0247 (4)
H13A −0.6228 0.8492 0.7714 0.030*
C14 −0.4248 (3) 0.82279 (11) 0.88559 (13) 0.0229 (4)
H14A −0.5106 0.8486 0.9303 0.027*
C15 −0.2349 (3) 0.78504 (11) 0.91642 (12) 0.0196 (4)
H15A −0.1912 0.7846 0.9815 0.024*
H1N1 1.018 (3) 0.4836 (14) 0.9106 (15) 0.037 (6)*
H1N3 0.457 (4) 0.6258 (14) 0.9879 (16) 0.039 (6)*
H1N4 0.144 (3) 0.6806 (14) 0.8234 (15) 0.029 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0267 (2) 0.0507 (3) 0.0168 (2) 0.0076 (2) 0.00014 (18) −0.0045 (2)
O1 0.0242 (6) 0.0248 (7) 0.0189 (6) 0.0016 (5) −0.0032 (5) 0.0026 (5)
N1 0.0191 (7) 0.0199 (8) 0.0228 (8) 0.0043 (6) −0.0032 (6) 0.0020 (6)
N2 0.0189 (7) 0.0153 (7) 0.0187 (7) −0.0008 (6) 0.0001 (5) 0.0008 (6)
N3 0.0184 (7) 0.0216 (8) 0.0171 (7) 0.0022 (6) −0.0011 (6) 0.0020 (6)
N4 0.0184 (7) 0.0193 (8) 0.0166 (7) 0.0032 (6) 0.0014 (6) 0.0000 (6)
C1 0.0195 (8) 0.0131 (8) 0.0254 (9) 0.0000 (7) −0.0025 (7) 0.0014 (7)
C2 0.0211 (9) 0.0197 (9) 0.0315 (10) 0.0045 (7) 0.0006 (8) 0.0030 (8)
C3 0.0265 (9) 0.0231 (9) 0.0268 (9) 0.0049 (8) 0.0064 (8) 0.0016 (8)
C4 0.0248 (9) 0.0220 (9) 0.0225 (9) 0.0017 (7) 0.0004 (7) 0.0018 (7)
C5 0.0187 (8) 0.0181 (9) 0.0248 (9) 0.0010 (7) −0.0016 (7) 0.0016 (7)
C6 0.0190 (8) 0.0140 (8) 0.0220 (8) 0.0005 (7) −0.0007 (7) 0.0009 (7)
C7 0.0183 (8) 0.0127 (8) 0.0213 (8) −0.0015 (6) −0.0020 (7) 0.0023 (6)
C8 0.0187 (8) 0.0120 (8) 0.0254 (9) −0.0013 (7) −0.0021 (7) 0.0031 (7)
C9 0.0173 (8) 0.0186 (8) 0.0195 (8) −0.0036 (7) 0.0016 (6) 0.0035 (7)
C10 0.0164 (8) 0.0136 (8) 0.0205 (8) −0.0016 (6) 0.0017 (6) 0.0014 (6)
C11 0.0198 (8) 0.0179 (8) 0.0194 (8) 0.0002 (7) 0.0023 (7) 0.0013 (7)
C12 0.0243 (9) 0.0204 (9) 0.0257 (9) −0.0013 (7) −0.0043 (7) 0.0044 (7)
C13 0.0187 (8) 0.0167 (9) 0.0383 (11) 0.0006 (7) −0.0014 (8) 0.0044 (8)
C14 0.0201 (8) 0.0153 (8) 0.0339 (10) 0.0008 (7) 0.0066 (7) −0.0026 (8)
C15 0.0214 (8) 0.0165 (8) 0.0211 (8) −0.0007 (7) 0.0024 (7) −0.0021 (7)

Geometric parameters (Å, º)

S1—C9 1.6600 (18) C4—C5 1.389 (3)
O1—C8 1.238 (2) C4—H4A 0.9500
N1—C8 1.352 (2) C5—C6 1.389 (2)
N1—C1 1.408 (2) C5—H5A 0.9500
N1—H1N1 0.88 (2) C6—C7 1.452 (2)
N2—C7 1.291 (2) C7—C8 1.504 (2)
N2—N3 1.349 (2) C10—C15 1.394 (2)
N3—C9 1.378 (2) C10—C11 1.397 (2)
N3—H1N3 0.87 (2) C11—C12 1.385 (2)
N4—C9 1.343 (2) C11—H11A 0.9500
N4—C10 1.416 (2) C12—C13 1.386 (3)
N4—H1N4 0.88 (2) C12—H12A 0.9500
C1—C2 1.381 (3) C13—C14 1.385 (3)
C1—C6 1.407 (2) C13—H13A 0.9500
C2—C3 1.393 (3) C14—C15 1.390 (2)
C2—H2A 0.9500 C14—H14A 0.9500
C3—C4 1.397 (2) C15—H15A 0.9500
C3—H3A 0.9500
C8—N1—C1 111.31 (14) N2—C7—C6 125.83 (15)
C8—N1—H1N1 123.0 (14) N2—C7—C8 127.70 (16)
C1—N1—H1N1 125.7 (14) C6—C7—C8 106.43 (14)
C7—N2—N3 117.83 (14) O1—C8—N1 127.51 (15)
N2—N3—C9 120.23 (14) O1—C8—C7 126.16 (16)
N2—N3—H1N3 118.7 (15) N1—C8—C7 106.34 (15)
C9—N3—H1N3 120.6 (15) N4—C9—N3 112.68 (15)
C9—N4—C10 132.49 (16) N4—C9—S1 129.71 (14)
C9—N4—H1N4 110.5 (13) N3—C9—S1 117.61 (12)
C10—N4—H1N4 116.9 (13) C15—C10—C11 119.98 (15)
C2—C1—C6 122.14 (16) C15—C10—N4 125.29 (15)
C2—C1—N1 128.43 (15) C11—C10—N4 114.71 (15)
C6—C1—N1 109.42 (15) C12—C11—C10 120.19 (17)
C1—C2—C3 117.03 (16) C12—C11—H11A 119.9
C1—C2—H2A 121.5 C10—C11—H11A 119.9
C3—C2—H2A 121.5 C11—C12—C13 120.24 (16)
C2—C3—C4 121.63 (18) C11—C12—H12A 119.9
C2—C3—H3A 119.2 C13—C12—H12A 119.9
C4—C3—H3A 119.2 C14—C13—C12 119.32 (16)
C5—C4—C3 120.78 (16) C14—C13—H13A 120.3
C5—C4—H4A 119.6 C12—C13—H13A 120.3
C3—C4—H4A 119.6 C13—C14—C15 121.48 (17)
C6—C5—C4 118.29 (16) C13—C14—H14A 119.3
C6—C5—H5A 120.9 C15—C14—H14A 119.3
C4—C5—H5A 120.9 C14—C15—C10 118.79 (16)
C5—C6—C1 120.11 (17) C14—C15—H15A 120.6
C5—C6—C7 133.33 (16) C10—C15—H15A 120.6
C1—C6—C7 106.50 (14)
C7—N2—N3—C9 173.69 (15) C1—N1—C8—O1 −179.73 (17)
C8—N1—C1—C2 178.50 (18) C1—N1—C8—C7 0.46 (18)
C8—N1—C1—C6 −0.7 (2) N2—C7—C8—O1 2.3 (3)
C6—C1—C2—C3 0.1 (3) C6—C7—C8—O1 −179.84 (16)
N1—C1—C2—C3 −179.09 (17) N2—C7—C8—N1 −177.88 (17)
C1—C2—C3—C4 1.1 (3) C6—C7—C8—N1 −0.03 (18)
C2—C3—C4—C5 −1.1 (3) C10—N4—C9—N3 174.00 (16)
C3—C4—C5—C6 −0.1 (3) C10—N4—C9—S1 −6.4 (3)
C4—C5—C6—C1 1.2 (3) N2—N3—C9—N4 4.1 (2)
C4—C5—C6—C7 177.76 (18) N2—N3—C9—S1 −175.54 (12)
C2—C1—C6—C5 −1.3 (3) C9—N4—C10—C15 −0.6 (3)
N1—C1—C6—C5 178.05 (15) C9—N4—C10—C11 −179.21 (17)
C2—C1—C6—C7 −178.61 (16) C15—C10—C11—C12 −0.6 (3)
N1—C1—C6—C7 0.69 (19) N4—C10—C11—C12 178.11 (15)
N3—N2—C7—C6 −176.52 (15) C10—C11—C12—C13 0.2 (3)
N3—N2—C7—C8 0.9 (3) C11—C12—C13—C14 0.5 (3)
C5—C6—C7—N2 0.6 (3) C12—C13—C14—C15 −0.8 (3)
C1—C6—C7—N2 177.50 (16) C13—C14—C15—C10 0.4 (3)
C5—C6—C7—C8 −177.26 (19) C11—C10—C15—C14 0.3 (2)
C1—C6—C7—C8 −0.40 (18) N4—C10—C15—C14 −178.24 (16)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C10–C15 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.88 (2) 2.00 (2) 2.8737 (18) 173.9 (18)
N3—H1N3···O1 0.87 (2) 2.07 (2) 2.7646 (18) 136 (2)
N4—H1N4···N2 0.88 (2) 2.05 (2) 2.5781 (19) 117.4 (17)
C11—H11A···S1ii 0.95 2.83 3.6017 (19) 139
C15—H15A···S1 0.95 2.60 3.2735 (19) 128
C2—H2A···Cg3iii 0.95 2.80 3.510 (2) 132
C13—H13A···Cg2iv 0.95 2.82 3.5201 (19) 131

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2464).

References

  1. Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285–o286. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. [DOI] [PubMed]
  4. Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argüelles, M. C. (2002). Polyhedron, 21, 2593–2599.
  7. Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.
  8. Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609. [DOI] [PMC free article] [PubMed]
  9. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142. [DOI] [PMC free article] [PubMed]
  10. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477. [DOI] [PMC free article] [PubMed]
  11. Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  15. Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.
  16. Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anticancer Agents Med. Chem. 9, 397–414. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200400X/wn2464sup1.cif

e-68-0o962-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200400X/wn2464Isup2.hkl

e-68-0o962-Isup2.hkl (203.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200400X/wn2464Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES