Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o970. doi: 10.1107/S1600536812008938

1-(2-Hy­droxy­eth­yl)pyrrole-2,5-dione

Xue-Jie Tan a,*, Ting-Wen Du a, Dian-Xiang Xing a, Yun Liu a
PMCID: PMC3343945  PMID: 22590026

Abstract

The asymmetric unit of the title compound, C6H7NO3, contains two mol­ecules (A and B) related by a non-crystallographic twofold pseudo-axis. The mol­ecules are joined in the (AABB)n manner by O—H⋯O hydrogen bonds between their hy­droxy groups, thus forming C(2) chains along the a-axis direction. Neighboring mol­ecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hy­droxy H atoms are disordered other two sets of sites with half occupancies (superimposed O—H⋯O and O⋯H—O fragments). The mol­ecules are further linked by C—H⋯O inter­actions, which can be considered to be weak hydrogen bonds.

Related literature  

For self-initiated photopolymerization, see: Cheng et al. (2006); Ericsson (2001). For photopolymerization of N-substituted maleimides, see: Yamada et al. (1968). For applications of similar compounds, see: Stang & White (2011); Sanchez et al. (2011); Keller et al. (2005). For the synthesis of the title compound, see: Yamada et al. (1961); Gramlich et al. (2010); Heath et al. (2008).graphic file with name e-68-0o970-scheme1.jpg

Experimental  

Crystal data  

  • C6H7NO3

  • M r = 141.13

  • Monoclinic, Inline graphic

  • a = 7.734 (4) Å

  • b = 9.701 (5) Å

  • c = 17.673 (8) Å

  • β = 96.660 (7)°

  • V = 1317.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.45 × 0.29 × 0.26 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.962, T max = 0.976

  • 7522 measured reflections

  • 3003 independent reflections

  • 1972 reflections with I > 2σ(I)

  • R int = 0.060

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.217

  • S = 1.10

  • 3003 reflections

  • 201 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008938/yk2042sup1.cif

e-68-0o970-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008938/yk2042Isup2.hkl

e-68-0o970-Isup2.hkl (147.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008938/yk2042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯O2Biii 0.93 2.38 3.188 (4) 146
C4B—H4B⋯O5Ai 0.93 2.49 3.114 (4) 125
O12A—H12A⋯O12B 0.82 (1) 1.91 (1) 2.688 (3) 158 (3)
O12A—H12C⋯O12Ai 0.82 (1) 2.01 (4) 2.702 (5) 142 (7)
O12B—H12B⋯O12A 0.82 (1) 1.88 (2) 2.688 (3) 168 (8)
O12B—H12D⋯O12Bii 0.82 (1) 1.98 (2) 2.773 (4) 163 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Science & Technology Development Project of Shandong Province in China (No. 2011GGB01164), the National Natural Science Foundation of China (NSFC, No. 21103100) and the Natural Science Foundation of Shandong Province in China (No. ZR2009BM040).

supplementary crystallographic information

Comment

Maleimides are a class of reactive "synthons" having a polymerizable double bond. They are particularly useful in manufacturing oligomers capable of self-initiated photopolymerization (Cheng et al., 2006; Ericsson, 2001). The title compound, N-2-hydroxyethylmaleimide, first prepared in 1961 (Yamada et al., 1961), is a well-known maleimide that has been intensively studied during last years (Stang & White, 2011; Sanchez et al., 2011; Keller et al., 2005). However its crystal structure has not been determined. In this work, the crystal structure of the title compound is reported, and its molecular packing mode is discussed.

As shown in Fig. 1, the asymmetric unit of the title compound contains two molecules (A and B) related by the non-crystallographic two-fold pseudo-axis. The molecules are joined in the (AABB)n manner by O—H···O hydrogen bonds between their hydroxy groups, thus forming the C(2) chains stretched along the a-axis direction. The neighboring molecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hydroxy hydrogen atoms are disordered other two sets of sites with half occupancies, thus the fragments O—H···O and O···H—O are superimposed. The molecules are further linked by intermolecular C—H···O interactions, which can be considered as weak hydrogen bonds.

Instead of helices, hydrogen bonds make (I) pack into zigzag-type pleated sheets stretched along (0 0 1) planes (Fig. 2). Adjacent sheets are arranged in an antiparallel manner, yielding an ABAB layer sequence. Either O—H···O and C—H···O interactions or no such interactions occur between adjacent sheets. As can be seen, the hydrogen-bonded sheets are rather closely spaced in the lattice (3.9103 (9) Å) than no-hydrogen-bonded sheets (4.9262 (8) Å).

Experimental

The title compound was synthesized using established method (Gramlich et al., 2010; Heath et al., 2008). Elemental analysis: Calcd: C 51.06; H 5.00; N 9.93%. Found: C 51.11; H 4.92; N 10.02%.

Refinement

The C-bound H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The disordered O-bound H atoms with half occupancies were refined with the O—H and C···H distances restrained to 0.82 (1) Å and 1.85 (2) Å and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labelling scheme and thermal ellipsoids drawn at the 40% probability level. Intermolecular hydrogen bonds O—H···O are presented by dashed lines.

Fig. 2.

Fig. 2.

Portion of six infinite two-dimensional corrugated sheets in (I) linked by hydrogen-bonds, viewed along the a axis. These six sheets can be dubbed in three pairs of hydrogen-bonded layers.

Crystal data

C6H7NO3 F(000) = 592.0
Mr = 141.13 Dx = 1.424 Mg m3
Monoclinic, P21/c Melting point: 344 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.734 (4) Å Cell parameters from 380 reflections
b = 9.701 (5) Å θ = 2.5–28.3°
c = 17.673 (8) Å µ = 0.12 mm1
β = 96.660 (7)° T = 293 K
V = 1317.0 (11) Å3 Block, colourless
Z = 8 0.45 × 0.29 × 0.26 mm

Data collection

Bruker SMART CCD diffractometer 3003 independent reflections
Radiation source: fine-focus sealed tube 1972 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.060
φ and ω scans θmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −8→10
Tmin = 0.962, Tmax = 0.976 k = −11→12
7522 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.097P)2 + 0.420P] where P = (Fo2 + 2Fc2)/3
3003 reflections (Δ/σ)max = 0.001
201 parameters Δρmax = 0.38 e Å3
8 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2A 0.2520 (4) 1.0076 (3) 0.5604 (2) 0.0911 (10)
O5A 0.2601 (3) 0.5693 (2) 0.64576 (16) 0.0653 (7)
O12A 0.4289 (3) 0.6222 (3) 0.47672 (15) 0.0617 (7)
H12A 0.3228 (14) 0.630 (4) 0.475 (5) 0.093* 0.50
H12B 0.1884 (13) 0.594 (5) 0.452 (5) 0.093* 0.50
O2B 0.2505 (3) 0.9305 (2) 0.33843 (17) 0.0709 (8)
O5B 0.2400 (3) 0.4751 (2) 0.28146 (15) 0.0622 (7)
O12B 0.0831 (3) 0.5827 (2) 0.45141 (14) 0.0529 (6)
H12C 0.450 (9) 0.561 (3) 0.508 (2) 0.079* 0.50
H12D 0.023 (5) 0.548 (6) 0.481 (4) 0.079* 0.50
N1A 0.3035 (3) 0.7840 (2) 0.59889 (14) 0.0440 (6)
N1B 0.1968 (3) 0.7013 (2) 0.31464 (13) 0.0369 (6)
C2A 0.2026 (5) 0.9003 (3) 0.5835 (2) 0.0544 (8)
C3A 0.0255 (5) 0.8636 (4) 0.6022 (2) 0.0607 (9)
H3A −0.0708 0.9216 0.5973 0.073*
C4A 0.0275 (4) 0.7364 (4) 0.62661 (18) 0.0527 (8)
H4A −0.0669 0.6888 0.6420 0.063*
C5A 0.2058 (4) 0.6808 (3) 0.62565 (17) 0.0435 (7)
C11A 0.4858 (4) 0.7719 (3) 0.5876 (2) 0.0510 (8)
H111 0.5380 0.6972 0.6189 0.061*
H112 0.5458 0.8564 0.6040 0.061*
C12A 0.5090 (4) 0.7447 (4) 0.5057 (2) 0.0583 (9)
H121 0.4612 0.8216 0.4751 0.070*
H122 0.6325 0.7398 0.5009 0.070*
C2B 0.2981 (4) 0.8183 (3) 0.32075 (18) 0.0436 (7)
C3B 0.4715 (4) 0.7761 (3) 0.30062 (19) 0.0483 (8)
H3B 0.5671 0.8340 0.2997 0.058*
C4B 0.4683 (4) 0.6462 (3) 0.28466 (18) 0.0468 (8)
H4B 0.5613 0.5957 0.2702 0.056*
C5B 0.2936 (4) 0.5904 (3) 0.29288 (17) 0.0412 (7)
C11B 0.0143 (4) 0.6925 (3) 0.32856 (17) 0.0432 (7)
H113 −0.0359 0.6087 0.3055 0.052*
H114 −0.0489 0.7700 0.3041 0.052*
C12B −0.0084 (4) 0.6927 (3) 0.41195 (19) 0.0491 (8)
H123 0.0332 0.7795 0.4343 0.059*
H124 −0.1313 0.6850 0.4177 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2A 0.089 (2) 0.0435 (16) 0.144 (3) 0.0012 (14) 0.0289 (19) 0.0214 (17)
O5A 0.0582 (15) 0.0482 (14) 0.0865 (19) −0.0029 (11) −0.0048 (13) 0.0229 (13)
O12A 0.0487 (13) 0.0734 (17) 0.0628 (16) 0.0004 (12) 0.0055 (12) −0.0066 (12)
O2B 0.0717 (17) 0.0406 (14) 0.105 (2) 0.0016 (11) 0.0321 (15) −0.0125 (13)
O5B 0.0615 (15) 0.0379 (13) 0.0905 (19) −0.0007 (10) 0.0232 (13) −0.0092 (12)
O12B 0.0448 (12) 0.0588 (14) 0.0561 (14) −0.0039 (11) 0.0105 (11) 0.0157 (11)
N1A 0.0459 (14) 0.0391 (14) 0.0468 (14) −0.0010 (11) 0.0048 (11) 0.0041 (11)
N1B 0.0362 (12) 0.0353 (13) 0.0407 (13) 0.0040 (10) 0.0109 (10) 0.0037 (10)
C2A 0.066 (2) 0.0370 (18) 0.060 (2) 0.0050 (15) 0.0101 (17) 0.0021 (15)
C3A 0.060 (2) 0.053 (2) 0.072 (2) 0.0157 (16) 0.0204 (18) −0.0029 (18)
C4A 0.0535 (19) 0.061 (2) 0.0456 (18) −0.0009 (16) 0.0136 (15) −0.0041 (15)
C5A 0.0464 (17) 0.0445 (17) 0.0388 (15) −0.0010 (13) 0.0011 (12) 0.0060 (13)
C11A 0.0379 (16) 0.0485 (18) 0.065 (2) −0.0061 (14) 0.0005 (14) −0.0005 (16)
C12A 0.0439 (18) 0.062 (2) 0.071 (2) −0.0044 (16) 0.0140 (16) 0.0094 (18)
C2B 0.0481 (17) 0.0371 (16) 0.0468 (17) 0.0009 (13) 0.0109 (13) 0.0052 (13)
C3B 0.0433 (17) 0.0446 (18) 0.0588 (19) −0.0076 (13) 0.0133 (14) 0.0083 (15)
C4B 0.0428 (17) 0.0435 (17) 0.0567 (19) 0.0110 (13) 0.0170 (14) 0.0131 (14)
C5B 0.0479 (17) 0.0338 (16) 0.0427 (16) 0.0073 (12) 0.0089 (13) 0.0064 (12)
C11B 0.0368 (15) 0.0454 (17) 0.0484 (17) 0.0037 (12) 0.0092 (13) 0.0045 (13)
C12B 0.0490 (18) 0.0458 (18) 0.0565 (19) 0.0015 (14) 0.0227 (15) 0.0005 (15)

Geometric parameters (Å, º)

O2A—C2A 1.196 (4) C3A—H3A 0.9300
O5A—C5A 1.199 (4) C4A—C5A 1.483 (4)
O12A—C12A 1.409 (4) C4A—H4A 0.9300
O12A—H12A 0.821 (10) C11A—C12A 1.503 (5)
O12A—H12C 0.821 (10) C11A—H111 0.9700
O2B—C2B 1.202 (4) C11A—H112 0.9700
O5B—C5B 1.201 (4) C12A—H121 0.9700
O12B—C12B 1.418 (4) C12A—H122 0.9700
O12B—H12B 0.821 (10) C2B—C3B 1.484 (4)
O12B—H12D 0.817 (10) C3B—C4B 1.291 (4)
N1A—C5A 1.371 (4) C3B—H3B 0.9300
N1A—C2A 1.381 (4) C4B—C5B 1.478 (4)
N1A—C11A 1.452 (4) C4B—H4B 0.9300
N1B—C2B 1.376 (4) C11B—C12B 1.504 (4)
N1B—C5B 1.391 (4) C11B—H113 0.9700
N1B—C11B 1.463 (4) C11B—H114 0.9700
C2A—C3A 1.489 (5) C12B—H123 0.9700
C3A—C4A 1.307 (5) C12B—H124 0.9700
C12A—O12A—H12A 110 (2) O12A—C12A—C11A 113.7 (3)
C12A—O12A—H12C 109 (2) O12A—C12A—H121 108.8
H12A—O12A—H12C 102 (8) C11A—C12A—H121 108.8
C12B—O12B—H12B 110 (2) O12A—C12A—H122 108.8
C12B—O12B—H12D 110 (2) C11A—C12A—H122 108.8
H12B—O12B—H12D 133 (6) H121—C12A—H122 107.7
C5A—N1A—C2A 110.1 (3) O2B—C2B—N1B 125.3 (3)
C5A—N1A—C11A 124.8 (3) O2B—C2B—C3B 128.6 (3)
C2A—N1A—C11A 125.1 (3) N1B—C2B—C3B 106.0 (2)
C2B—N1B—C5B 109.9 (2) C4B—C3B—C2B 109.1 (3)
C2B—N1B—C11B 125.9 (2) C4B—C3B—H3B 125.5
C5B—N1B—C11B 124.2 (2) C2B—C3B—H3B 125.5
O2A—C2A—N1A 125.6 (3) C3B—C4B—C5B 109.3 (3)
O2A—C2A—C3A 128.5 (3) C3B—C4B—H4B 125.3
N1A—C2A—C3A 105.9 (3) C5B—C4B—H4B 125.3
C4A—C3A—C2A 108.9 (3) O5B—C5B—N1B 125.5 (3)
C4A—C3A—H3A 125.6 O5B—C5B—C4B 128.7 (3)
C2A—C3A—H3A 125.6 N1B—C5B—C4B 105.7 (2)
C3A—C4A—C5A 108.4 (3) N1B—C11B—C12B 112.9 (3)
C3A—C4A—H4A 125.8 N1B—C11B—H113 109.0
C5A—C4A—H4A 125.8 C12B—C11B—H113 109.0
O5A—C5A—N1A 125.0 (3) N1B—C11B—H114 109.0
O5A—C5A—C4A 128.2 (3) C12B—C11B—H114 109.0
N1A—C5A—C4A 106.8 (3) H113—C11B—H114 107.8
N1A—C11A—C12A 111.9 (3) O12B—C12B—C11B 111.9 (2)
N1A—C11A—H111 109.2 O12B—C12B—H123 109.2
C12A—C11A—H111 109.2 C11B—C12B—H123 109.2
N1A—C11A—H112 109.2 O12B—C12B—H124 109.2
C12A—C11A—H112 109.2 C11B—C12B—H124 109.2
H111—C11A—H112 107.9 H123—C12B—H124 107.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O12A—H12A···O12B 0.82 (1) 1.91 (1) 2.688 (3) 158 (3)
O12B—H12B···O12A 0.82 (1) 1.88 (2) 2.688 (3) 168 (8)
O12A—H12C···O12Ai 0.82 (1) 2.01 (4) 2.702 (5) 142 (7)
O12B—H12D···O12Bii 0.82 (1) 1.98 (2) 2.773 (4) 163 (5)
C4B—H4B···O5Ai 0.93 2.49 3.114 (4) 125
C3A—H3A···O2Biii 0.93 2.38 3.188 (4) 146

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2042).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, Ch. H., Sabahi, M., Sulzer, G. M. & Ramachandran, V. (2006). US Patent Appl. 2006035386.
  3. Ericsson, J. (2001). Int. Patent Appl. 2001000510.
  4. Gramlich, W. M., Robertson, M. L. & Hillmyer, M. A. (2010). Macromolecules, 43, 2313–2321.
  5. Heath, W. H., Palmieri, F., Adams, J. R., Long, B. K., Chute, J., Holcombe, T. W., Zieren, S., Truitt, M. J., White, J. L. & Willson, C. G. (2008). Macromolecules, 41, 719–726.
  6. Keller, K. A., Guo, J., Punna, S. & Finn, M. G. (2005). Tetrahedron Lett. 46, 1181–1184.
  7. Sanchez, A., Pedroso, E. & Grandas, A. (2011). Org. Lett. 13, 4364–4367. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stang, E. M. & White, M. C. (2011). J. Am. Chem. Soc. 133, 14892–14895. [DOI] [PMC free article] [PubMed]
  10. Yamada, M., Takase, I., Hayashi, K., Hashimoto, Y. & Komiya, Y. (1961). J. Soc. Org. Synth. Chem. (Jpn), 23, 166–170.
  11. Yamada, M., Takase, I. & Koutou, N. (1968). J. Polym. Sci. B, 6, 883–888.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008938/yk2042sup1.cif

e-68-0o970-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008938/yk2042Isup2.hkl

e-68-0o970-Isup2.hkl (147.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008938/yk2042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES