Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o971. doi: 10.1107/S1600536812009257

5-Meth­oxy-1-[(5-meth­oxy-1H-indol-2-yl)meth­yl]-1H-indole

Mohamed I Attia a, Nasser R El-Brollosy a, Hazem A Ghabbour a, Suhana Arshad b, Hoong-Kun Fun b,*,
PMCID: PMC3343946  PMID: 22590027

Abstract

In the title compound, C19H18N2O2, the two indole ring systems are essentially planar [maximum deviation = 0.015 (2) Å in both indole ring systems] and make a dihedral angle of 72.17 (7)° with each other. In the crystal, the mol­ecules are linked into a zigzag chain along the a axis via N—H⋯O hydrogen bonds.

Related literature  

For the biological activity of melatonin (MLT), see: Csernus & Mess (2003); Nosjean et al. (2000); Blask et al. (2002); Genovese et al. (2005); Mills et al. (2005); Peres (2005); Sofic et al. (2005); Witt-Enderby et al. (2006). For related structures, see: Narayanan et al. (2011); Deng et al. (2011). For the synthesis, see: Attia et al. (2008).graphic file with name e-68-0o971-scheme1.jpg

Experimental  

Crystal data  

  • C19H18N2O2

  • M r = 306.35

  • Monoclinic, Inline graphic

  • a = 9.4446 (5) Å

  • b = 19.5625 (8) Å

  • c = 8.6657 (5) Å

  • β = 98.903 (4)°

  • V = 1581.78 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 296 K

  • 0.92 × 0.20 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.575, T max = 0.961

  • 9421 measured reflections

  • 2584 independent reflections

  • 2087 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.133

  • S = 1.06

  • 2584 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009257/is5084sup1.cif

e-68-0o971-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009257/is5084Isup2.hkl

e-68-0o971-Isup2.hkl (126.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009257/is5084Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.88 (2) 2.24 (3) 3.037 (2) 151 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for supporting this study. HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

supplementary crystallographic information

Comment

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is primarily produced by the pineal gland in the brain with a marked circadian rhythm normally peaking in the dark to regulate sleep. MLT acts through activation of two G-protein-coupled receptors, designated as MT1 and MT2 (Csernus & Mess, 2003). In addition, a low-affinity putative MLT binding site called MT3 has been recently characterized as a melatonin-sensitive form of the human enzyme quinine reductase 2 (Nosjean et al., 2000). MLT has found widespread use in the treatment of sleep disorders. Other effects described in the literature include its anti-inflammatory, pain modulatory, antitumor, and antioxidant properties (Blask et al., 2002; Genovese et al., 2005; Mills et al., 2005; Peres, 2005; Sofic et al., 2005; Witt-Enderby et al., 2006). The title compound is an intermediate which could yield, via the reported procedure (Attia et al., 2008), various MLT analogues which can be evaluated for their potency and selectivity for MLT receptor subtypes.

In the title compound (Fig. 1), the indole ring systems (N1/C10–C17 & N2/C1–C8) are essentially planar with maximum deviations of 0.015 (2) Å at atom C10 and C2, respectively. In addition, the indole ring systems are almost perpendicular to each other with dihedral angle of 72.17 (7)°. Bond lengths and angles are within the normal range and are comparable to those in the related structures (Narayanan et al., 2011; Deng et al., 2011).

The crystal structure is shown in Fig. 2. The molecules are linked into one dimensional zigzag chains along a-axis via N2—H1N2···O1 interactions (Table 1).

Experimental

(5-Methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone (0.50 g, 156.03 mmol) was dissolved in dry THF (5 ml) and was added drop-wise to a cooled (0 °C) suspension of LiAlH4/AlCl3 in dry diethyl ether (prepared by a slow addition of AlCl3 (0.32 g, 2.41 mmol) to a suspension LiAlH4 (0.27 g, 7.13 mmol) in dry diethyl ether (15 ml) at 0 °C). The resulting reaction mixture was stirred at 0 °C for one hour and at room temperature for another one hour. The reaction was quenched by a slow addition of saturated sodium sulfate solution. The solids formed were removed by filtration, washed with chloroform (20 ml) and the combined organic phase was dried (Na2SO4) and evaporated under reduced pressure. The residue was purified by silica gel chromatography (chloroform/methanol/ammonia, 10.0:1.0:0.1) to produce the title compound as a light red powder which was recrystallized from ethanol to give single crystals (m.p. 173–174 °C).

Refinement

N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.88 (2) Å]. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed along the c axis. For the sake of clarity, H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.

Crystal data

C19H18N2O2 F(000) = 648
Mr = 306.35 Dx = 1.286 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 919 reflections
a = 9.4446 (5) Å θ = 4.5–60.8°
b = 19.5625 (8) Å µ = 0.68 mm1
c = 8.6657 (5) Å T = 296 K
β = 98.903 (4)° Plate, pink
V = 1581.78 (14) Å3 0.92 × 0.20 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2584 independent reflections
Radiation source: fine-focus sealed tube 2087 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 65.0°, θmin = 4.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.575, Tmax = 0.961 k = −22→22
9421 measured reflections l = −8→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3465P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2584 reflections Δρmax = 0.15 e Å3
215 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0029 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.57956 (17) 0.66569 (8) 0.6878 (2) 0.0604 (4)
N2 0.32036 (18) 0.76234 (9) 0.5805 (2) 0.0588 (4)
O1 1.08253 (15) 0.66541 (8) 0.44352 (19) 0.0727 (5)
O2 0.1802 (2) 1.02435 (9) 0.3902 (2) 0.0978 (6)
C1 0.4392 (2) 0.77296 (11) 0.6916 (2) 0.0573 (5)
C2 0.4672 (2) 0.84059 (11) 0.7021 (2) 0.0616 (5)
H2A 0.5421 0.8610 0.7683 0.074*
C3 0.36179 (19) 0.87542 (10) 0.5938 (2) 0.0536 (5)
C4 0.3345 (2) 0.94428 (11) 0.5531 (3) 0.0644 (6)
H4A 0.3924 0.9789 0.6018 0.077*
C5 0.2203 (2) 0.95918 (11) 0.4396 (3) 0.0675 (6)
C6 0.1345 (2) 0.90736 (12) 0.3641 (3) 0.0703 (6)
H6A 0.0593 0.9188 0.2859 0.084*
C7 0.1585 (2) 0.84013 (12) 0.4025 (3) 0.0661 (6)
H7A 0.1008 0.8059 0.3519 0.079*
C8 0.27154 (19) 0.82467 (9) 0.5191 (2) 0.0529 (5)
C9 0.5147 (2) 0.71548 (12) 0.7821 (3) 0.0709 (6)
H9A 0.5893 0.7342 0.8602 0.085*
H9B 0.4470 0.6918 0.8368 0.085*
C10 0.5303 (2) 0.60163 (11) 0.6481 (3) 0.0728 (6)
H10A 0.4461 0.5831 0.6732 0.087*
C11 0.6216 (2) 0.56865 (11) 0.5667 (3) 0.0704 (6)
H11A 0.6112 0.5244 0.5271 0.084*
C12 0.73578 (19) 0.61433 (9) 0.5536 (2) 0.0535 (5)
C13 0.86132 (19) 0.60976 (9) 0.4852 (2) 0.0552 (5)
H13A 0.8813 0.5708 0.4311 0.066*
C14 0.95290 (19) 0.66412 (10) 0.5005 (2) 0.0538 (5)
C15 0.9232 (2) 0.72402 (10) 0.5783 (2) 0.0565 (5)
H15A 0.9874 0.7603 0.5852 0.068*
C16 0.8003 (2) 0.72991 (9) 0.6444 (2) 0.0548 (5)
H16A 0.7802 0.7696 0.6961 0.066*
C17 0.70772 (19) 0.67448 (9) 0.6312 (2) 0.0505 (4)
C18 1.1240 (3) 0.60545 (15) 0.3717 (4) 0.0934 (8)
H18A 1.2164 0.6122 0.3411 0.140*
H18B 1.0550 0.5953 0.2811 0.140*
H18C 1.1287 0.5680 0.4440 0.140*
C19 0.2324 (3) 1.07922 (13) 0.4857 (4) 0.1022 (9)
H19A 0.1819 1.1201 0.4492 0.153*
H19C 0.3328 1.0851 0.4823 0.153*
H19D 0.2184 1.0701 0.5911 0.153*
H1N2 0.274 (3) 0.7238 (12) 0.559 (3) 0.072 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0524 (9) 0.0644 (10) 0.0664 (11) 0.0041 (7) 0.0159 (7) 0.0093 (8)
N2 0.0544 (9) 0.0598 (10) 0.0637 (11) −0.0052 (8) 0.0135 (7) 0.0005 (8)
O1 0.0617 (8) 0.0756 (10) 0.0863 (11) −0.0066 (7) 0.0287 (7) −0.0043 (8)
O2 0.1246 (15) 0.0672 (10) 0.0933 (14) 0.0037 (9) −0.0091 (11) 0.0129 (9)
C1 0.0501 (10) 0.0742 (13) 0.0501 (12) 0.0041 (9) 0.0153 (8) −0.0015 (9)
C2 0.0528 (11) 0.0777 (14) 0.0531 (12) −0.0001 (9) 0.0040 (8) −0.0115 (9)
C3 0.0514 (10) 0.0635 (11) 0.0475 (11) −0.0020 (8) 0.0132 (8) −0.0084 (8)
C4 0.0669 (12) 0.0638 (13) 0.0615 (13) −0.0084 (10) 0.0073 (10) −0.0102 (9)
C5 0.0758 (13) 0.0634 (12) 0.0624 (14) 0.0007 (10) 0.0078 (10) 0.0034 (10)
C6 0.0682 (13) 0.0769 (14) 0.0617 (14) −0.0004 (11) −0.0031 (10) 0.0038 (10)
C7 0.0601 (12) 0.0718 (14) 0.0634 (13) −0.0117 (10) 0.0005 (10) −0.0038 (10)
C8 0.0495 (10) 0.0603 (11) 0.0513 (11) −0.0038 (8) 0.0147 (8) −0.0033 (8)
C9 0.0676 (13) 0.0903 (16) 0.0584 (14) 0.0158 (11) 0.0217 (10) 0.0089 (11)
C10 0.0542 (11) 0.0711 (14) 0.0938 (18) −0.0107 (10) 0.0132 (11) 0.0141 (12)
C11 0.0587 (12) 0.0594 (12) 0.0917 (17) −0.0093 (10) 0.0079 (11) −0.0037 (11)
C12 0.0482 (10) 0.0538 (10) 0.0563 (12) −0.0028 (8) 0.0015 (8) 0.0027 (8)
C13 0.0543 (10) 0.0534 (10) 0.0569 (12) 0.0020 (8) 0.0061 (8) −0.0050 (8)
C14 0.0486 (10) 0.0600 (11) 0.0534 (11) −0.0017 (8) 0.0097 (8) 0.0042 (8)
C15 0.0546 (10) 0.0527 (11) 0.0618 (13) −0.0058 (8) 0.0078 (8) 0.0018 (8)
C16 0.0592 (11) 0.0502 (10) 0.0538 (12) 0.0011 (8) 0.0053 (8) −0.0016 (8)
C17 0.0479 (9) 0.0530 (10) 0.0502 (10) 0.0031 (8) 0.0064 (7) 0.0072 (8)
C18 0.0780 (16) 0.1011 (19) 0.110 (2) 0.0006 (14) 0.0436 (14) −0.0225 (15)
C19 0.112 (2) 0.0623 (15) 0.128 (3) 0.0008 (14) 0.0042 (18) 0.0030 (15)

Geometric parameters (Å, º)

N1—C10 1.362 (3) C7—H7A 0.9300
N1—C17 1.385 (2) C9—H9A 0.9700
N1—C9 1.465 (3) C9—H9B 0.9700
N2—C1 1.377 (3) C10—C11 1.359 (3)
N2—C8 1.381 (3) C10—H10A 0.9300
N2—H1N2 0.88 (2) C11—C12 1.419 (3)
O1—C14 1.390 (2) C11—H11A 0.9300
O1—C18 1.411 (3) C12—C17 1.401 (3)
O2—C5 1.379 (3) C12—C13 1.408 (3)
O2—C19 1.398 (3) C13—C14 1.364 (3)
C1—C2 1.349 (3) C13—H13A 0.9300
C1—C9 1.488 (3) C14—C15 1.402 (3)
C2—C3 1.431 (3) C15—C16 1.376 (3)
C2—H2A 0.9300 C15—H15A 0.9300
C3—C8 1.400 (3) C16—C17 1.387 (3)
C3—C4 1.406 (3) C16—H16A 0.9300
C4—C5 1.374 (3) C18—H18A 0.9600
C4—H4A 0.9300 C18—H18B 0.9600
C5—C6 1.396 (3) C18—H18C 0.9600
C6—C7 1.367 (3) C19—H19A 0.9600
C6—H6A 0.9300 C19—H19C 0.9600
C7—C8 1.385 (3) C19—H19D 0.9600
C10—N1—C17 107.95 (17) H9A—C9—H9B 107.6
C10—N1—C9 126.61 (18) C11—C10—N1 110.38 (18)
C17—N1—C9 125.33 (17) C11—C10—H10A 124.8
C1—N2—C8 108.88 (17) N1—C10—H10A 124.8
C1—N2—H1N2 127.1 (16) C10—C11—C12 107.10 (19)
C8—N2—H1N2 123.6 (16) C10—C11—H11A 126.5
C14—O1—C18 117.49 (17) C12—C11—H11A 126.5
C5—O2—C19 118.1 (2) C17—C12—C13 119.31 (16)
C2—C1—N2 108.97 (18) C17—C12—C11 106.74 (18)
C2—C1—C9 129.2 (2) C13—C12—C11 133.94 (19)
N2—C1—C9 121.79 (19) C14—C13—C12 118.18 (17)
C1—C2—C3 108.28 (17) C14—C13—H13A 120.9
C1—C2—H2A 125.9 C12—C13—H13A 120.9
C3—C2—H2A 125.9 C13—C14—O1 124.04 (18)
C8—C3—C4 119.24 (18) C13—C14—C15 121.81 (18)
C8—C3—C2 106.12 (17) O1—C14—C15 114.14 (16)
C4—C3—C2 134.64 (18) C16—C15—C14 120.99 (17)
C5—C4—C3 118.42 (19) C16—C15—H15A 119.5
C5—C4—H4A 120.8 C14—C15—H15A 119.5
C3—C4—H4A 120.8 C15—C16—C17 117.50 (17)
C4—C5—O2 124.4 (2) C15—C16—H16A 121.2
C4—C5—C6 121.1 (2) C17—C16—H16A 121.2
O2—C5—C6 114.5 (2) N1—C17—C16 129.98 (18)
C7—C6—C5 121.5 (2) N1—C17—C12 107.83 (16)
C7—C6—H6A 119.3 C16—C17—C12 122.19 (18)
C5—C6—H6A 119.3 O1—C18—H18A 109.5
C6—C7—C8 117.88 (19) O1—C18—H18B 109.5
C6—C7—H7A 121.1 H18A—C18—H18B 109.5
C8—C7—H7A 121.1 O1—C18—H18C 109.5
N2—C8—C7 130.36 (18) H18A—C18—H18C 109.5
N2—C8—C3 107.76 (17) H18B—C18—H18C 109.5
C7—C8—C3 121.86 (19) O2—C19—H19A 109.5
N1—C9—C1 114.58 (18) O2—C19—H19C 109.5
N1—C9—H9A 108.6 H19A—C19—H19C 109.5
C1—C9—H9A 108.6 O2—C19—H19D 109.5
N1—C9—H9B 108.6 H19A—C19—H19D 109.5
C1—C9—H9B 108.6 H19C—C19—H19D 109.5
C8—N2—C1—C2 −0.1 (2) N2—C1—C9—N1 63.6 (3)
C8—N2—C1—C9 178.52 (17) C17—N1—C10—C11 −0.4 (2)
N2—C1—C2—C3 0.3 (2) C9—N1—C10—C11 −176.8 (2)
C9—C1—C2—C3 −178.2 (2) N1—C10—C11—C12 0.0 (3)
C1—C2—C3—C8 −0.3 (2) C10—C11—C12—C17 0.5 (2)
C1—C2—C3—C4 179.3 (2) C10—C11—C12—C13 179.3 (2)
C8—C3—C4—C5 −0.7 (3) C17—C12—C13—C14 1.4 (3)
C2—C3—C4—C5 179.7 (2) C11—C12—C13—C14 −177.2 (2)
C3—C4—C5—O2 179.0 (2) C12—C13—C14—O1 177.71 (17)
C3—C4—C5—C6 −1.1 (3) C12—C13—C14—C15 −1.6 (3)
C19—O2—C5—C4 −17.5 (4) C18—O1—C14—C13 −2.9 (3)
C19—O2—C5—C6 162.6 (2) C18—O1—C14—C15 176.4 (2)
C4—C5—C6—C7 1.6 (4) C13—C14—C15—C16 0.9 (3)
O2—C5—C6—C7 −178.5 (2) O1—C14—C15—C16 −178.47 (17)
C5—C6—C7—C8 −0.2 (3) C14—C15—C16—C17 0.0 (3)
C1—N2—C8—C7 178.2 (2) C10—N1—C17—C16 −178.4 (2)
C1—N2—C8—C3 −0.1 (2) C9—N1—C17—C16 −1.9 (3)
C6—C7—C8—N2 −179.7 (2) C10—N1—C17—C12 0.7 (2)
C6—C7—C8—C3 −1.6 (3) C9—N1—C17—C12 177.15 (18)
C4—C3—C8—N2 −179.48 (17) C15—C16—C17—N1 178.80 (18)
C2—C3—C8—N2 0.3 (2) C15—C16—C17—C12 −0.2 (3)
C4—C3—C8—C7 2.1 (3) C13—C12—C17—N1 −179.73 (16)
C2—C3—C8—C7 −178.18 (18) C11—C12—C17—N1 −0.7 (2)
C10—N1—C9—C1 −105.6 (2) C13—C12—C17—C16 −0.5 (3)
C17—N1—C9—C1 78.6 (3) C11—C12—C17—C16 178.44 (17)
C2—C1—C9—N1 −118.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.88 (2) 2.24 (3) 3.037 (2) 151 (2)

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5084).

References

  1. Attia, M. I., Witt-Enderby, P. A. & Julius, J. (2008). Bioorg. Med. Chem. 16, 7654–7661. [DOI] [PubMed]
  2. Blask, D. E., Sauer, L. A. & Dauchy, R. T. (2002). Curr. Top. Med. Chem. 2, 113–132. [DOI] [PubMed]
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Csernus, V. & Mess, B. (2003). Neuroendocrinol. Lett. 24, 404–411.
  5. Deng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603. [DOI] [PMC free article] [PubMed]
  6. Genovese, T., Mazzon, E., Muia, C., Bramanti, P., De Sarro, A. & Cuzzocrea, S. (2005). J. Pineal Res. 38, 198–208. [DOI] [PubMed]
  7. Mills, E., Wu, P., Seely, D. & Guyatt, G. (2005). J. Pineal Res. 39, 360–366. [DOI] [PubMed]
  8. Narayanan, P., Sethusankar, K., Ramachandiran, K. & Perumal, P. T. (2011). Acta Cryst. E67, o3196. [DOI] [PMC free article] [PubMed]
  9. Nosjean, O., Ferro, M., Coge, F., Beauverger, P., Henlin, J.-M., Lefoulon, F., Fauchere, J. L., Delagrange, P., Canet, E. & Boutin, J. A. (2000). J. Biol. Chem. 275, 31311–31317. [DOI] [PubMed]
  10. Peres, M. F. P. (2005). Cephalalgia, 5, 403–411. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sofic, E., Rimpapa, Z., Kundurovic, Z., Sapcanin, A., Tahirovic, I., Rustembegovic, A. & Cao, G. (2005). J. Neural Transm. 112, 349–358. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Witt-Enderby, P. A., Radio, N. M., Doctor, J. S. & Davis, V. L. (2006). J. Pineal Res. 41, 297–305. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009257/is5084sup1.cif

e-68-0o971-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009257/is5084Isup2.hkl

e-68-0o971-Isup2.hkl (126.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009257/is5084Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES