Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o982. doi: 10.1107/S1600536812009233

N-(2,6-Dimethylphenyl)-N′-propanoyl­thiourea

Mohd Sukeri Mohd Yusof a, Siti Fatimah Abdul Mutalib a, Suhana Arshad b, Ibrahim Abdul Razak b,*,
PMCID: PMC3343953  PMID: 22590034

Abstract

In the title compound, C12H16N2OS, an intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. The propionyl­thio­urea group is approximately planar [with a maximum deviation of 0.135 (2) Å] and forms a dihedral angle of 83.39 (7)° with the benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming centrosymmetric dimers and generating R 2 2(8) ring motifs.

Related literature  

For related structures, see: Yamin & Othman (2008); Usman et al. (2002); Sultana et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-0o982-scheme1.jpg

Experimental  

Crystal data  

  • C12H16N2OS

  • M r = 236.33

  • Triclinic, Inline graphic

  • a = 7.8069 (3) Å

  • b = 8.4770 (3) Å

  • c = 10.1426 (3) Å

  • α = 103.782 (2)°

  • β = 90.342 (2)°

  • γ = 109.928 (2)°

  • V = 610.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.23 × 0.18 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.946, T max = 0.985

  • 6225 measured reflections

  • 3211 independent reflections

  • 2664 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 1.00

  • 3211 reflections

  • 156 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009233/lh5423sup1.cif

e-68-0o982-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009233/lh5423Isup2.hkl

e-68-0o982-Isup2.hkl (157.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009233/lh5423Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.85 (2) 1.98 (2) 2.6661 (19) 138 (2)
N1—H1N1⋯S1i 0.87 (2) 2.54 (2) 3.3765 (15) 162.0 (16)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Fundamental Research Grant Scheme No. 203/PFIZIK/6711171 to conduct this work.

supplementary crystallographic information

Comment

The title compound is analogous to N-propionylthiourea, (Yamin & Othman, 2008) except that the hydogen atom at the N terminal atom is replaced by a 2,6-dimethylphenyl group.

In the molecular structure (Fig. 1), an intramolecular N2—H1N2···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The propionylthiourea group (S1/N1/N2/O1/C1-C4) is approximately planar (with a maximum deviation of 0.135 (2)Å for C1) and forms a dihedral angle of 83.39 (7)° with the benzene ring (C5-C10). The bond lengths and angles are within normal ranges and are comparable to related structures (Usman et al., 2002; Sultana et al., 2007).

The crystal packing is shown in Fig. 2. The molecules are linked by pairs of intermolecular N1—H1N1···S1i hydrogen bonds (Table 1) to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995).

Experimental

To a stirring acetone solution (75 ml) of propionyl chloride (2.42 g, 0.03 mol) and ammonium thiocyanate (2.0 g, 0.03 mol), 2,6-dimethylaniline (3.64 g, 0.03 mol) in 40 ml of acetone was added dropwise. The mixture was refluxed reflux for 1 h. The resulting solution was poured into a beaker containing ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement

N-bound H atoms were located from the difference map and refined freely, [N–H = 0.85 (2) and 0.87 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95-0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C12H16N2OS Z = 2
Mr = 236.33 F(000) = 252
Triclinic, P1 Dx = 1.287 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8069 (3) Å Cell parameters from 2626 reflections
b = 8.4770 (3) Å θ = 2.8–30.1°
c = 10.1426 (3) Å µ = 0.25 mm1
α = 103.782 (2)° T = 100 K
β = 90.342 (2)° Plate, colourless
γ = 109.928 (2)° 0.23 × 0.18 × 0.06 mm
V = 610.07 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3211 independent reflections
Radiation source: fine-focus sealed tube 2664 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→5
Tmin = 0.946, Tmax = 0.985 k = −11→11
6225 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.6043P] where P = (Fo2 + 2Fc2)/3
3211 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29160 (6) 0.31937 (5) 0.83787 (4) 0.02011 (12)
N1 0.48198 (18) 0.65151 (17) 0.86755 (14) 0.0150 (3)
H1N1 0.537 (3) 0.634 (2) 0.934 (2) 0.018 (5)*
N2 0.23611 (18) 0.53214 (18) 0.70040 (14) 0.0159 (3)
H1N2 0.269 (3) 0.634 (3) 0.690 (2) 0.032 (6)*
O1 0.45702 (17) 0.86360 (15) 0.77368 (12) 0.0218 (3)
C1 0.7853 (2) 1.1145 (2) 0.90542 (19) 0.0243 (4)
H1A 0.8956 1.1898 0.9662 0.036*
H1B 0.6927 1.1697 0.9161 0.036*
H1C 0.8158 1.0959 0.8107 0.036*
C2 0.7107 (2) 0.9413 (2) 0.94142 (17) 0.0184 (3)
H2A 0.8052 0.8867 0.9313 0.022*
H2B 0.6838 0.9612 1.0380 0.022*
C3 0.5388 (2) 0.8192 (2) 0.85224 (16) 0.0153 (3)
C4 0.3335 (2) 0.5086 (2) 0.79737 (16) 0.0152 (3)
C5 0.0741 (2) 0.3969 (2) 0.62443 (16) 0.0153 (3)
C6 0.0916 (2) 0.2808 (2) 0.50703 (17) 0.0187 (3)
C7 −0.0683 (3) 0.1516 (2) 0.43662 (18) 0.0229 (4)
H7A −0.0605 0.0696 0.3569 0.027*
C8 −0.2383 (2) 0.1413 (2) 0.48146 (19) 0.0251 (4)
H8A −0.3457 0.0529 0.4322 0.030*
C9 −0.2519 (2) 0.2590 (2) 0.59732 (19) 0.0239 (4)
H9A −0.3691 0.2508 0.6270 0.029*
C10 −0.0956 (2) 0.3906 (2) 0.67187 (17) 0.0188 (3)
C11 −0.1090 (3) 0.5156 (2) 0.79955 (19) 0.0254 (4)
H11A −0.0389 0.5064 0.8760 0.038*
H11B −0.2376 0.4883 0.8180 0.038*
H11C −0.0594 0.6340 0.7884 0.038*
C12 0.2756 (3) 0.2913 (2) 0.45815 (19) 0.0252 (4)
H12A 0.3586 0.2987 0.5341 0.038*
H12B 0.3259 0.3946 0.4234 0.038*
H12C 0.2622 0.1874 0.3852 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0208 (2) 0.01442 (19) 0.0210 (2) 0.00006 (15) −0.00808 (16) 0.00615 (15)
N1 0.0141 (6) 0.0134 (6) 0.0152 (6) 0.0021 (5) −0.0051 (5) 0.0037 (5)
N2 0.0152 (7) 0.0128 (6) 0.0165 (7) 0.0013 (5) −0.0038 (5) 0.0033 (5)
O1 0.0238 (6) 0.0167 (6) 0.0229 (6) 0.0041 (5) −0.0069 (5) 0.0061 (5)
C1 0.0232 (9) 0.0169 (8) 0.0260 (9) −0.0010 (7) −0.0023 (7) 0.0052 (7)
C2 0.0179 (8) 0.0140 (7) 0.0199 (8) 0.0028 (6) −0.0038 (6) 0.0025 (6)
C3 0.0150 (7) 0.0145 (7) 0.0141 (7) 0.0037 (6) 0.0009 (6) 0.0019 (5)
C4 0.0135 (7) 0.0154 (7) 0.0142 (7) 0.0032 (6) 0.0002 (6) 0.0019 (6)
C5 0.0152 (7) 0.0131 (7) 0.0153 (7) 0.0019 (6) −0.0044 (6) 0.0043 (6)
C6 0.0197 (8) 0.0171 (8) 0.0179 (8) 0.0044 (6) −0.0033 (6) 0.0051 (6)
C7 0.0283 (9) 0.0165 (8) 0.0179 (8) 0.0020 (7) −0.0081 (7) 0.0025 (6)
C8 0.0212 (9) 0.0211 (9) 0.0260 (9) −0.0028 (7) −0.0126 (7) 0.0091 (7)
C9 0.0161 (8) 0.0267 (9) 0.0289 (9) 0.0033 (7) −0.0035 (7) 0.0134 (7)
C10 0.0192 (8) 0.0195 (8) 0.0191 (8) 0.0070 (6) −0.0011 (6) 0.0072 (6)
C11 0.0220 (9) 0.0285 (9) 0.0275 (9) 0.0114 (7) 0.0038 (7) 0.0069 (7)
C12 0.0263 (9) 0.0268 (9) 0.0207 (9) 0.0096 (7) 0.0026 (7) 0.0024 (7)

Geometric parameters (Å, º)

S1—C4 1.6756 (16) C5—C10 1.400 (2)
N1—C3 1.385 (2) C6—C7 1.397 (2)
N1—C4 1.393 (2) C6—C12 1.503 (2)
N1—H1N1 0.87 (2) C7—C8 1.386 (3)
N2—C4 1.331 (2) C7—H7A 0.9500
N2—C5 1.445 (2) C8—C9 1.380 (3)
N2—H1N2 0.85 (2) C8—H8A 0.9500
O1—C3 1.219 (2) C9—C10 1.401 (2)
C1—C2 1.517 (2) C9—H9A 0.9500
C1—H1A 0.9800 C10—C11 1.495 (2)
C1—H1B 0.9800 C11—H11A 0.9800
C1—H1C 0.9800 C11—H11B 0.9800
C2—C3 1.511 (2) C11—H11C 0.9800
C2—H2A 0.9900 C12—H12A 0.9800
C2—H2B 0.9900 C12—H12B 0.9800
C5—C6 1.393 (2) C12—H12C 0.9800
C3—N1—C4 127.85 (14) C5—C6—C7 117.67 (16)
C3—N1—H1N1 117.2 (13) C5—C6—C12 121.57 (15)
C4—N1—H1N1 114.7 (13) C7—C6—C12 120.75 (16)
C4—N2—C5 122.62 (13) C8—C7—C6 120.93 (17)
C4—N2—H1N2 116.3 (15) C8—C7—H7A 119.5
C5—N2—H1N2 120.9 (15) C6—C7—H7A 119.5
C2—C1—H1A 109.5 C9—C8—C7 120.23 (16)
C2—C1—H1B 109.5 C9—C8—H8A 119.9
H1A—C1—H1B 109.5 C7—C8—H8A 119.9
C2—C1—H1C 109.5 C8—C9—C10 121.04 (17)
H1A—C1—H1C 109.5 C8—C9—H9A 119.5
H1B—C1—H1C 109.5 C10—C9—H9A 119.5
C3—C2—C1 112.25 (14) C5—C10—C9 117.38 (16)
C3—C2—H2A 109.2 C5—C10—C11 121.28 (15)
C1—C2—H2A 109.2 C9—C10—C11 121.31 (16)
C3—C2—H2B 109.2 C10—C11—H11A 109.5
C1—C2—H2B 109.2 C10—C11—H11B 109.5
H2A—C2—H2B 107.9 H11A—C11—H11B 109.5
O1—C3—N1 122.77 (15) C10—C11—H11C 109.5
O1—C3—C2 123.23 (14) H11A—C11—H11C 109.5
N1—C3—C2 114.00 (14) H11B—C11—H11C 109.5
N2—C4—N1 117.11 (14) C6—C12—H12A 109.5
N2—C4—S1 124.53 (12) C6—C12—H12B 109.5
N1—C4—S1 118.36 (12) H12A—C12—H12B 109.5
C6—C5—C10 122.74 (15) C6—C12—H12C 109.5
C6—C5—N2 119.40 (14) H12A—C12—H12C 109.5
C10—C5—N2 117.85 (15) H12B—C12—H12C 109.5
C4—N1—C3—O1 2.3 (3) C10—C5—C6—C12 179.71 (15)
C4—N1—C3—C2 −177.72 (15) N2—C5—C6—C12 0.8 (2)
C1—C2—C3—O1 −9.3 (2) C5—C6—C7—C8 0.9 (2)
C1—C2—C3—N1 170.72 (14) C12—C6—C7—C8 179.91 (16)
C5—N2—C4—N1 −177.10 (14) C6—C7—C8—C9 −0.2 (3)
C5—N2—C4—S1 4.1 (2) C7—C8—C9—C10 −0.1 (3)
C3—N1—C4—N2 2.4 (2) C6—C5—C10—C9 1.0 (2)
C3—N1—C4—S1 −178.77 (13) N2—C5—C10—C9 179.92 (14)
C4—N2—C5—C6 −87.4 (2) C6—C5—C10—C11 179.02 (15)
C4—N2—C5—C10 93.64 (19) N2—C5—C10—C11 −2.0 (2)
C10—C5—C6—C7 −1.2 (2) C8—C9—C10—C5 −0.3 (2)
N2—C5—C6—C7 179.82 (14) C8—C9—C10—C11 −178.34 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1 0.85 (2) 1.98 (2) 2.6661 (19) 138 (2)
N1—H1N1···S1i 0.87 (2) 2.54 (2) 3.3765 (15) 162.0 (16)

Symmetry code: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5423).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Sultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.
  7. Usman, A., Razak, I. A., Satar, S., Kadir, M. A., Yamin, B. M. & Fun, H.-K. (2002). Acta Cryst. E58, o656–o658.
  8. Yamin, B. M. & Othman, E. A. (2008). Acta Cryst. E64, o313. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009233/lh5423sup1.cif

e-68-0o982-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009233/lh5423Isup2.hkl

e-68-0o982-Isup2.hkl (157.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009233/lh5423Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES