Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o988. doi: 10.1107/S160053681200846X

4-Meth­oxy-N-(4-nitro­benz­yl)aniline

Kamini Kapoor a, Vivek K Gupta a, Indresh Kumar b, Nisar A Mir b, Rajni Kant a,*
PMCID: PMC3343958  PMID: 22590039

Abstract

In the title compound, C14H14N2O3, the nitro group is nearly coplanar with the benzene ring to which it is bonded [dihedral angle = 1.70 (2)°], and this ring is para-substituted by the amino­methyl­ene group. The dihedral angle between the benzene rings is 57.8 (1)°. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are also observed.

Related literature  

For related structures, see: Iwasaki et al. (1988). For the biological properties of aldimines, see: Rjosk & Neumann (1971); Hillesheim et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o988-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O3

  • M r = 258.27

  • Monoclinic, Inline graphic

  • a = 7.4993 (3) Å

  • b = 17.1516 (7) Å

  • c = 10.0048 (5) Å

  • β = 96.861 (4)°

  • V = 1277.65 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.955, T max = 1.000

  • 11435 measured reflections

  • 2511 independent reflections

  • 1692 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.130

  • S = 1.05

  • 2511 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200846X/bh2415sup1.cif

e-68-0o988-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200846X/bh2415Isup2.hkl

e-68-0o988-Isup2.hkl (120.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200846X/bh2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the nitro­phenyl (C1–C6) and meth­oxy­phenyl (C9–C14) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1i 0.89 (2) 2.42 (3) 3.231 (2) 152.8 (19)
C16—H16B⋯O2ii 0.96 2.47 3.372 (3) 155
C3—H3⋯Cg2iii 0.93 2.77 3.560 (2) 143
C6—H6⋯Cg2iv 0.93 2.87 3.524 (2) 129
C16—H16ACg1v 0.96 2.96 3.830 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu (India) for financial support.

supplementary crystallographic information

Comment

In continuation of our project on the preparation of various aldimines from p-anisidine and aromatic aldehydes in refluxing methanol, the title compound has been prepared using the reductive amination method. In undergoing further applications of aldimines in various cycloaddition reactions (Rjosk & Neumann, 1971; Hillesheim et al., 1995), we observed that aldimines undergo a reductive amination with NaBH4 in presence of catalytic amounts of AcOH in MeOH, to afford 4-methoxy-N-(4-nitrobenzyl)aniline as one of the products. We further tried to prepare this compound under similar conditions in a separate flask, and the title compound was obtained in high yield (> 90%) through reductive amination of p-nitrobenzaldehyde with p-anisidine.

The bond lengths in the molecule are within normal ranges (Allen et al., 1987) and comparable with those found in related molecules (Iwasaki et al., 1988). The nitro group is nearly coplanar to the benzene ring to which it is bonded, the dihedral angle being 1.70 (2)°. The 4-methoxy phenyl group is trans to the 4-nitro phenyl group about the C7—N8 bond. The torsion angle C1—C7—N8—C9 is 178.22 (17)°. Hydrogen H8 on atom N8 forms an intermolecular hydrogen bond with the nitro O atom O1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into N—H···O hydrogen bonded dimers. Dimers are connected via C—H···O hydrogen bonds and form chains along the c-axis of the unit cell (Table 1, Fig. 2). On the other hand, C—H···π interactions (Cg1 is the centroid of the nitro-phenyl ring and Cg2 is the centroid of the methoxy-phenyl ring, Table 1) play important role in stabilizing the crystal structure.

Experimental

To a stirred solution of p-nitro-benzaldehyde (0.5 g, 3.3 mmol) in MeOH (10 ml) was added p-anisidine (0.41 g, 3.3 mmol) at room temperature and the mixture was refluxed for 4 h. The resulting reaction mixture was cooled to 273 K, which resulted in the precipitation of the corresponding aldimine intermediate. Few drops of AcOH were added, followed by NaBH4 (0.09 g, 2.5 mmol), at the same temperature. The combined reaction mixture was stirred additionally for 2 h and quenched with sat. NaHCO3 solution, extracted with EtOAc (2×15 ml), and concentrated under reduced pressure. The resulting crude amine compound was crystallized in hexane/EtOAc (2:1), to afford the title compound with 92% yield. 1H-NMR: 3.68 (s, 3H), 4.38 (s, 2H), 6.40 (d, 2H), 6.72 (d, 2H), 7.65 (d, 2H), 8.10 (d, 2H).

Refinement

Hydrogen atom H8 was found in a difference map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular N—H···O and C—H···O hydrogen bonds.

Crystal data

C14H14N2O3 F(000) = 544
Mr = 258.27 Dx = 1.343 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4747 reflections
a = 7.4993 (3) Å θ = 3.6–29.0°
b = 17.1516 (7) Å µ = 0.10 mm1
c = 10.0048 (5) Å T = 293 K
β = 96.861 (4)° Block, red
V = 1277.65 (10) Å3 0.3 × 0.2 × 0.1 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2511 independent reflections
Radiation source: fine-focus sealed tube 1692 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.6°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −21→21
Tmin = 0.955, Tmax = 1.000 l = −12→12
11435 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.2077P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2511 reflections Δρmax = 0.18 e Å3
178 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0116 (18)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2703 (2) 0.01096 (11) 0.2223 (2) 0.0948 (6)
O2 −0.3470 (3) 0.12998 (13) 0.2161 (3) 0.1390 (10)
N1 −0.2400 (2) 0.07908 (13) 0.24933 (19) 0.0695 (5)
C1 0.2618 (2) 0.14226 (11) 0.45527 (19) 0.0499 (5)
C2 0.2220 (3) 0.06469 (12) 0.4248 (2) 0.0581 (5)
H2 0.3072 0.0265 0.4505 0.070*
C3 0.0581 (3) 0.04336 (11) 0.3571 (2) 0.0550 (5)
H3 0.0320 −0.0086 0.3367 0.066*
C4 −0.0654 (2) 0.10088 (11) 0.32049 (18) 0.0491 (5)
C5 −0.0304 (3) 0.17839 (12) 0.3476 (2) 0.0563 (5)
H5 −0.1155 0.2165 0.3210 0.068*
C6 0.1338 (3) 0.19793 (11) 0.4152 (2) 0.0547 (5)
H6 0.1593 0.2501 0.4344 0.066*
C7 0.4411 (3) 0.16668 (12) 0.5260 (2) 0.0636 (6)
H7A 0.5284 0.1668 0.4619 0.076*
H7B 0.4319 0.2195 0.5592 0.076*
N8 0.5039 (2) 0.11659 (10) 0.63639 (18) 0.0597 (5)
C9 0.6719 (2) 0.13024 (10) 0.71064 (19) 0.0464 (5)
C10 0.7998 (2) 0.17809 (11) 0.66267 (19) 0.0511 (5)
H10 0.7719 0.2042 0.5814 0.061*
C11 0.9671 (3) 0.18720 (11) 0.73402 (19) 0.0531 (5)
H11 1.0507 0.2194 0.7000 0.064*
C12 1.0133 (2) 0.14945 (10) 0.85483 (19) 0.0485 (5)
C13 0.8871 (3) 0.10262 (10) 0.90428 (19) 0.0510 (5)
H13 0.9152 0.0772 0.9863 0.061*
C14 0.7188 (2) 0.09308 (10) 0.83278 (19) 0.0505 (5)
H14 0.6354 0.0610 0.8674 0.061*
O15 1.18447 (17) 0.16348 (8) 0.91664 (14) 0.0652 (4)
C16 1.2455 (3) 0.12020 (13) 1.0336 (2) 0.0724 (7)
H16A 1.1723 0.1321 1.1034 0.109*
H16B 1.3681 0.1337 1.0633 0.109*
H16C 1.2375 0.0655 1.0135 0.109*
H8 0.421 (3) 0.0966 (13) 0.683 (2) 0.072 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0735 (11) 0.0908 (13) 0.1143 (15) −0.0263 (10) −0.0125 (10) −0.0124 (11)
O2 0.0739 (12) 0.1245 (17) 0.199 (3) 0.0363 (13) −0.0627 (14) −0.0507 (16)
N1 0.0484 (10) 0.0889 (14) 0.0686 (12) 0.0022 (11) −0.0032 (9) −0.0163 (11)
C1 0.0495 (11) 0.0541 (11) 0.0451 (11) −0.0046 (9) 0.0008 (8) 0.0047 (8)
C2 0.0502 (11) 0.0527 (11) 0.0680 (14) 0.0079 (9) −0.0063 (9) 0.0017 (10)
C3 0.0534 (11) 0.0500 (11) 0.0604 (13) −0.0011 (9) 0.0020 (9) −0.0047 (9)
C4 0.0407 (10) 0.0625 (12) 0.0435 (11) 0.0003 (9) 0.0030 (8) −0.0043 (9)
C5 0.0539 (12) 0.0570 (12) 0.0570 (12) 0.0117 (10) 0.0021 (9) 0.0001 (10)
C6 0.0603 (12) 0.0471 (11) 0.0557 (12) −0.0016 (9) 0.0029 (9) 0.0009 (9)
C7 0.0614 (13) 0.0599 (12) 0.0648 (14) −0.0114 (10) −0.0119 (10) 0.0118 (10)
N8 0.0488 (10) 0.0669 (11) 0.0601 (11) −0.0124 (9) −0.0074 (8) 0.0165 (9)
C9 0.0459 (10) 0.0408 (9) 0.0505 (11) −0.0027 (8) −0.0026 (8) 0.0000 (8)
C10 0.0549 (11) 0.0525 (11) 0.0442 (11) −0.0055 (9) −0.0011 (9) 0.0067 (9)
C11 0.0520 (11) 0.0520 (11) 0.0545 (12) −0.0124 (9) 0.0033 (9) 0.0048 (9)
C12 0.0470 (10) 0.0426 (10) 0.0533 (12) −0.0028 (8) −0.0044 (9) −0.0038 (8)
C13 0.0582 (12) 0.0454 (10) 0.0473 (11) −0.0010 (9) −0.0020 (9) 0.0067 (8)
C14 0.0503 (11) 0.0457 (10) 0.0544 (12) −0.0075 (9) 0.0017 (9) 0.0081 (9)
O15 0.0553 (8) 0.0660 (9) 0.0688 (10) −0.0128 (7) −0.0150 (7) 0.0086 (7)
C16 0.0653 (13) 0.0741 (14) 0.0711 (15) −0.0024 (12) −0.0196 (11) 0.0062 (12)

Geometric parameters (Å, º)

O1—N1 1.214 (2) N8—C9 1.404 (2)
O2—N1 1.206 (2) N8—H8 0.89 (2)
N1—C4 1.462 (2) C9—C14 1.386 (2)
C1—C6 1.379 (3) C9—C10 1.390 (3)
C1—C2 1.389 (3) C10—C11 1.377 (2)
C1—C7 1.502 (2) C10—H10 0.9300
C2—C3 1.380 (3) C11—C12 1.378 (3)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.373 (3) C12—C13 1.378 (3)
C3—H3 0.9300 C12—O15 1.378 (2)
C4—C5 1.376 (3) C13—C14 1.384 (2)
C5—C6 1.373 (3) C13—H13 0.9300
C5—H5 0.9300 C14—H14 0.9300
C6—H6 0.9300 O15—C16 1.415 (2)
C7—N8 1.433 (2) C16—H16A 0.9600
C7—H7A 0.9700 C16—H16B 0.9600
C7—H7B 0.9700 C16—H16C 0.9600
O2—N1—O1 122.31 (19) C9—N8—H8 115.1 (14)
O2—N1—C4 118.5 (2) C7—N8—H8 116.8 (14)
O1—N1—C4 119.17 (19) C14—C9—C10 117.59 (16)
C6—C1—C2 118.38 (17) C14—C9—N8 120.47 (16)
C6—C1—C7 119.78 (18) C10—C9—N8 121.88 (17)
C2—C1—C7 121.81 (17) C11—C10—C9 120.77 (17)
C3—C2—C1 121.14 (18) C11—C10—H10 119.6
C3—C2—H2 119.4 C9—C10—H10 119.6
C1—C2—H2 119.4 C10—C11—C12 121.28 (17)
C4—C3—C2 118.24 (18) C10—C11—H11 119.4
C4—C3—H3 120.9 C12—C11—H11 119.4
C2—C3—H3 120.9 C13—C12—O15 125.72 (17)
C3—C4—C5 122.36 (17) C13—C12—C11 118.53 (16)
C3—C4—N1 118.84 (18) O15—C12—C11 115.75 (16)
C5—C4—N1 118.80 (18) C12—C13—C14 120.43 (17)
C6—C5—C4 118.15 (18) C12—C13—H13 119.8
C6—C5—H5 120.9 C14—C13—H13 119.8
C4—C5—H5 120.9 C13—C14—C9 121.41 (17)
C5—C6—C1 121.73 (18) C13—C14—H14 119.3
C5—C6—H6 119.1 C9—C14—H14 119.3
C1—C6—H6 119.1 C12—O15—C16 118.13 (15)
N8—C7—C1 112.89 (16) O15—C16—H16A 109.5
N8—C7—H7A 109.0 O15—C16—H16B 109.5
C1—C7—H7A 109.0 H16A—C16—H16B 109.5
N8—C7—H7B 109.0 O15—C16—H16C 109.5
C1—C7—H7B 109.0 H16A—C16—H16C 109.5
H7A—C7—H7B 107.8 H16B—C16—H16C 109.5
C9—N8—C7 119.94 (16)
C6—C1—C2—C3 −0.5 (3) C1—C7—N8—C9 178.22 (17)
C7—C1—C2—C3 −178.52 (19) C7—N8—C9—C14 166.83 (19)
C1—C2—C3—C4 −0.1 (3) C7—N8—C9—C10 −16.1 (3)
C2—C3—C4—C5 0.8 (3) C14—C9—C10—C11 0.7 (3)
C2—C3—C4—N1 −179.66 (18) N8—C9—C10—C11 −176.45 (18)
O2—N1—C4—C3 −179.1 (2) C9—C10—C11—C12 −0.1 (3)
O1—N1—C4—C3 −1.3 (3) C10—C11—C12—C13 −0.7 (3)
O2—N1—C4—C5 0.5 (3) C10—C11—C12—O15 −179.83 (17)
O1—N1—C4—C5 178.3 (2) O15—C12—C13—C14 179.92 (17)
C3—C4—C5—C6 −0.8 (3) C11—C12—C13—C14 0.9 (3)
N1—C4—C5—C6 179.63 (17) C12—C13—C14—C9 −0.3 (3)
C4—C5—C6—C1 0.1 (3) C10—C9—C14—C13 −0.5 (3)
C2—C1—C6—C5 0.5 (3) N8—C9—C14—C13 176.68 (17)
C7—C1—C6—C5 178.53 (18) C13—C12—O15—C16 7.4 (3)
C6—C1—C7—N8 138.5 (2) C11—C12—O15—C16 −173.61 (18)
C2—C1—C7—N8 −43.5 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the nitrophenyl (C1–C6) and methoxyphenyl (C9–C14) rings, respectively.

D—H···A D—H H···A D···A D—H···A
N8—H8···O1i 0.89 (2) 2.42 (3) 3.231 (2) 152.8 (19)
C16—H16B···O2ii 0.96 2.47 3.372 (3) 155
C3—H3···Cg2iii 0.93 2.77 3.560 (2) 143
C6—H6···Cg2iv 0.93 2.87 3.524 (2) 129
C16—H16A···Cg1v 0.96 2.96 3.830 (2) 151

Symmetry codes: (i) −x, −y, −z+1; (ii) x+2, y, z+1; (iii) −x, −y+1, −z; (iv) x−1/2, −y+1/2, z−1/2; (v) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2415).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Hillesheim, W., Jaeschke, H. & Neumann, H.-G. (1995). Chem. Biol. Interact. 98, 85–95. [DOI] [PubMed]
  4. Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085–1090.
  5. Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Rjosk, H.-K. & Neumann, H.-G. (1971). Z. Krebsforsch. 75, 209–220. [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200846X/bh2415sup1.cif

e-68-0o988-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200846X/bh2415Isup2.hkl

e-68-0o988-Isup2.hkl (120.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200846X/bh2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES