Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o998–o999. doi: 10.1107/S1600536812009312

Marbofloxacin

Jin Shen a, Jing-Jing Qian a, Jian-Ming Gu b, Xiu-Rong Hu b,*
PMCID: PMC3343966  PMID: 22590047

Abstract

In the title compound, [systematic name: 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl­piperazin-1-yl)-7-oxo-7H-pyrido[1,2,3-ij][1,2,4]benzoxadiazine-6-carb­oxy­lic acid], C17H19FN4O4, the carbonyl and carboxyl groups are coplanar with the quinoline ring, making a dihedral angle of 2.39 (2)°. The piperazine ring adopts a chair conformation and the oxadiazinane ring displays an envelope conformation with the CH2 group at the flap displaced by 0.650 (2) Å from the plane through the other five atoms. The mol­ecular structure exhibits an S(6) ring motif, owing to an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯F hydrogen bonds link mol­ecules into layers parallel to the ab plane.

Related literature  

Marbofloxacin is a third-generation fluoro­quinolone for veterinary use, the anti­microbial activity of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008).graphic file with name e-68-0o998-scheme1.jpg

Experimental  

Crystal data  

  • C17H19FN4O4

  • M r = 362.36

  • Triclinic, Inline graphic

  • a = 8.0145 (5) Å

  • b = 8.9218 (6) Å

  • c = 13.0874 (8) Å

  • α = 91.65 (3)°

  • β = 99.65 (3)°

  • γ = 115.091 (10)°

  • V = 830.26 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.31 × 0.13 × 0.03 mm

Data collection  

  • Rigaku RAXIS-RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (Higashi, 1995) T min = 0.956, T max = 0.997

  • 6601 measured reflections

  • 2925 independent reflections

  • 1428 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.203

  • S = 1.00

  • 2925 reflections

  • 241 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009312/nr2019sup1.cif

e-68-0o998-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009312/nr2019Isup2.hkl

e-68-0o998-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009312/nr2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.83 (3) 1.77 (2) 2.560 (4) 159 (5)
C12—H12B⋯F1i 0.96 2.62 3.422 (3) 140 (4)
C15—H15B⋯F1ii 0.97 2.54 3.446 (3) 155 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).

supplementary crystallographic information

Comment

Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections due to both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008). But up till now, no single-crystal structure of marbofloxacin has been reported. In the prestent study, we report the crystal structure of marbofloxacin, recrystallized from methanol.

In the crystal structure of marbofloxacin (Fig.1), the carbonyl and carboxyl group are coplanar with the quinoline ring system. The least-squares plane through atoms O1, C1, C2, C3 and O3 is rotated by 2.39 (2)° with respect to the least-scqures plane of quinolinemoiety. The quionline moiety is planar, with the maximum displacement from the least-squares plane being observed for atom C2 [0.020 Å].

The piperazine ring adopts a chair conformation, with the distance of 0.663 (7) Å, -0.662 (7) Å for N4 and N3 to the plane of C13, C14, C15, C16, respectively. The oxadiazinane ring diaplays an envelop conformation. The methyl substituent on N1 is perpendicular to the quinoline moiety, with a C12—N1—N2—C10 torsion angle of -88.8 (4)°.

The carboxyl atom O1 and carbonyl atom O3 is connected by intramolecular hydrogen bond O1—H1···O3 and formed a six-membered ring. Weak intermolecular C15—H15B···F1i[Symmetric code:(i)1 + x,y,z] interaction link molecules into chains along a axis, which is stacked along b axis through another weak intermolecular interaction C12—H12B···F1ii[Symmetric code:(ii)1 + x,1 + y,z].

Experimental

The crude product is supplied by Zhejiang Excel Pharmaceutical Co.,Ltd. It was recrystallized from methanol solution, giving yellow crystal of marbofloxacin suitable for X-ray diffraction.

Refinement

Atom H1 was placed from the difference fourier density and refined free with restraints to the OH bond of O1—H1=0.82 (1) Å. All other H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and included in the refinement in riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of marbofloxacin showing atom-labelling scheme and displacement ellipsoids at 40% probability level. H atoms are shown as small circles of arbitary radii.

Fig. 2.

Fig. 2.

Part of the crystal packing of Marbofloxacin. Weak Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetric code: (i)1 + x,y,z; (ii)1 + x,1 + y,z.

Crystal data

C17H19FN4O4 Z = 2
Mr = 362.36 F(000) = 380
Triclinic, P1 Dx = 1.449 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0145 (5) Å Cell parameters from 4017 reflections
b = 8.9218 (6) Å θ = 3.1–27.4°
c = 13.0874 (8) Å µ = 0.11 mm1
α = 91.65 (3)° T = 296 K
β = 99.65 (3)° Plates, yellow
γ = 115.091 (10)° 0.31 × 0.13 × 0.03 mm
V = 830.26 (16) Å3

Data collection

Rigaku RAXIS-RAPID/ZJUG diffractometer 2925 independent reflections
Radiation source: rolling anode 1428 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
Detector resolution: 10.00 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −9→9
Absorption correction: multi-scan (Higashi, 1995) k = −10→10
Tmin = 0.956, Tmax = 0.997 l = −15→15
6601 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.072P)2 + 0.8525P] where P = (Fo2 + 2Fc2)/3
2925 reflections (Δ/σ)max < 0.001
241 parameters Δρmax = 0.29 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.2105 (3) 0.1945 (3) 0.64667 (19) 0.0642 (7)
O1 0.2871 (5) 0.7762 (4) 1.0967 (2) 0.0680 (9)
H1 0.230 (6) 0.693 (4) 1.053 (3) 0.09 (2)*
O2 0.5831 (5) 0.9686 (4) 1.1352 (2) 0.0732 (10)
O3 0.1921 (4) 0.5352 (4) 0.9550 (2) 0.0594 (8)
O4 0.8358 (3) 0.6152 (3) 0.7475 (2) 0.0539 (8)
N1 0.9081 (4) 0.8423 (4) 0.8761 (3) 0.0499 (9)
N2 0.7233 (4) 0.7572 (4) 0.8983 (2) 0.0455 (8)
N3 0.5854 (4) 0.3404 (4) 0.6136 (2) 0.0494 (9)
N4 0.7031 (5) 0.1924 (4) 0.4634 (3) 0.0551 (9)
C1 0.4644 (7) 0.8439 (6) 1.0818 (3) 0.0576 (11)
C2 0.5010 (5) 0.7549 (5) 0.9964 (3) 0.0451 (10)
C3 0.3568 (6) 0.6070 (5) 0.9367 (3) 0.0467 (10)
C4 0.4097 (5) 0.5369 (4) 0.8514 (3) 0.0414 (9)
C5 0.2802 (5) 0.3970 (5) 0.7853 (3) 0.0475 (10)
H5 0.1554 0.3464 0.7926 0.057*
C6 0.3386 (5) 0.3344 (5) 0.7091 (3) 0.0484 (10)
C7 0.5238 (5) 0.4014 (4) 0.6918 (3) 0.0436 (9)
C8 0.6516 (5) 0.5420 (5) 0.7594 (3) 0.0441 (9)
C9 0.9600 (5) 0.7160 (5) 0.8421 (3) 0.0557 (11)
H9A 0.9574 0.6446 0.8969 0.067*
H9B 1.0876 0.7688 0.8302 0.067*
C10 0.6778 (5) 0.8265 (5) 0.9749 (3) 0.0463 (10)
H10 0.7678 0.9247 1.0140 0.056*
C11 0.5951 (5) 0.6118 (4) 0.8364 (3) 0.0400 (9)
C12 0.9089 (7) 0.9603 (5) 0.7983 (4) 0.0665 (13)
H12A 0.8252 0.8996 0.7343 0.100*
H12B 1.0339 1.0196 0.7856 0.100*
H12C 0.8681 1.0380 0.8246 0.100*
C13 0.4605 (6) 0.2587 (6) 0.5132 (3) 0.0628 (12)
H13A 0.3799 0.3129 0.4920 0.075*
H13B 0.3817 0.1428 0.5190 0.075*
C14 0.5809 (7) 0.2709 (6) 0.4340 (3) 0.0684 (13)
H14A 0.5007 0.2181 0.3667 0.082*
H14B 0.6560 0.3872 0.4272 0.082*
C15 0.8245 (6) 0.2699 (6) 0.5640 (3) 0.0651 (13)
H15A 0.9056 0.3855 0.5587 0.078*
H15B 0.9034 0.2138 0.5841 0.078*
C16 0.7106 (6) 0.2613 (5) 0.6461 (3) 0.0546 (11)
H16A 0.6367 0.1459 0.6557 0.065*
H16B 0.7939 0.3180 0.7120 0.065*
C17 0.8116 (7) 0.1965 (6) 0.3831 (4) 0.0840 (17)
H17A 0.7272 0.1399 0.3185 0.126*
H17B 0.8906 0.1422 0.4042 0.126*
H17C 0.8881 0.3101 0.3740 0.126*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0504 (14) 0.0478 (13) 0.0771 (17) 0.0064 (11) 0.0123 (12) −0.0136 (12)
O1 0.077 (2) 0.081 (2) 0.0573 (19) 0.0394 (19) 0.0278 (17) 0.0012 (18)
O2 0.084 (2) 0.072 (2) 0.0611 (19) 0.0311 (18) 0.0186 (17) −0.0087 (17)
O3 0.0514 (17) 0.0659 (18) 0.0658 (19) 0.0245 (15) 0.0267 (15) 0.0086 (15)
O4 0.0438 (15) 0.0543 (16) 0.0548 (17) 0.0115 (13) 0.0164 (13) −0.0057 (13)
N1 0.0444 (19) 0.0450 (18) 0.056 (2) 0.0129 (15) 0.0172 (16) 0.0015 (16)
N2 0.0415 (18) 0.0460 (18) 0.0441 (18) 0.0137 (15) 0.0112 (14) 0.0023 (15)
N3 0.053 (2) 0.060 (2) 0.0391 (17) 0.0302 (17) 0.0041 (15) −0.0071 (15)
N4 0.067 (2) 0.0451 (19) 0.052 (2) 0.0196 (17) 0.0221 (17) −0.0016 (16)
C1 0.066 (3) 0.068 (3) 0.051 (3) 0.038 (2) 0.020 (2) 0.010 (2)
C2 0.059 (3) 0.048 (2) 0.036 (2) 0.029 (2) 0.0121 (18) 0.0061 (17)
C3 0.051 (2) 0.053 (2) 0.044 (2) 0.0278 (19) 0.0146 (19) 0.0114 (19)
C4 0.049 (2) 0.0373 (19) 0.040 (2) 0.0200 (17) 0.0092 (17) 0.0053 (16)
C5 0.042 (2) 0.045 (2) 0.055 (2) 0.0169 (18) 0.0115 (18) 0.0051 (19)
C6 0.042 (2) 0.038 (2) 0.056 (2) 0.0102 (17) 0.0063 (18) −0.0031 (18)
C7 0.051 (2) 0.0363 (19) 0.046 (2) 0.0205 (17) 0.0110 (18) 0.0056 (17)
C8 0.042 (2) 0.046 (2) 0.044 (2) 0.0186 (17) 0.0121 (17) 0.0003 (18)
C9 0.042 (2) 0.057 (2) 0.059 (3) 0.0149 (19) 0.0090 (19) −0.007 (2)
C10 0.054 (2) 0.048 (2) 0.038 (2) 0.0236 (19) 0.0104 (18) −0.0031 (17)
C11 0.041 (2) 0.0352 (18) 0.0396 (19) 0.0131 (16) 0.0082 (16) 0.0025 (16)
C12 0.069 (3) 0.058 (3) 0.068 (3) 0.018 (2) 0.025 (2) 0.010 (2)
C13 0.066 (3) 0.068 (3) 0.052 (3) 0.031 (2) 0.001 (2) −0.010 (2)
C14 0.083 (3) 0.070 (3) 0.049 (3) 0.032 (3) 0.010 (2) −0.001 (2)
C15 0.063 (3) 0.079 (3) 0.057 (3) 0.034 (2) 0.015 (2) −0.005 (2)
C16 0.063 (3) 0.061 (3) 0.053 (2) 0.038 (2) 0.015 (2) 0.005 (2)
C17 0.098 (4) 0.073 (3) 0.074 (3) 0.021 (3) 0.048 (3) −0.007 (3)

Geometric parameters (Å, º)

F1—C6 1.361 (4) C5—C6 1.368 (5)
O1—C1 1.339 (5) C5—H5 0.9300
O1—H1 0.83 (3) C6—C7 1.407 (5)
O2—C1 1.210 (5) C7—C8 1.395 (5)
O3—C3 1.267 (4) C8—C11 1.401 (5)
O4—C8 1.377 (4) C9—H9A 0.9700
O4—C9 1.448 (4) C9—H9B 0.9700
N1—N2 1.434 (4) C10—H10 0.9300
N1—C9 1.439 (5) C12—H12A 0.9600
N1—C12 1.484 (6) C12—H12B 0.9600
N2—C10 1.341 (4) C12—H12C 0.9600
N2—C11 1.387 (4) C13—C14 1.507 (6)
N3—C7 1.397 (4) C13—H13A 0.9700
N3—C13 1.465 (5) C13—H13B 0.9700
N3—C16 1.470 (5) C14—H14A 0.9700
N4—C14 1.438 (6) C14—H14B 0.9700
N4—C15 1.451 (5) C15—C16 1.506 (5)
N4—C17 1.464 (5) C15—H15A 0.9700
C1—C2 1.491 (5) C15—H15B 0.9700
C2—C10 1.368 (5) C16—H16A 0.9700
C2—C3 1.425 (5) C16—H16B 0.9700
C3—C4 1.470 (5) C17—H17A 0.9600
C4—C5 1.387 (5) C17—H17B 0.9600
C4—C11 1.399 (5) C17—H17C 0.9600
C1—O1—H1 106 (4) H9A—C9—H9B 107.9
C8—O4—C9 111.3 (3) N2—C10—C2 121.0 (3)
N2—N1—C9 106.7 (3) N2—C10—H10 119.5
N2—N1—C12 109.9 (3) C2—C10—H10 119.5
C9—N1—C12 113.8 (3) N2—C11—C4 119.3 (3)
C10—N2—C11 122.3 (3) N2—C11—C8 120.0 (3)
C10—N2—N1 118.4 (3) C4—C11—C8 120.7 (3)
C11—N2—N1 119.1 (3) N1—C12—H12A 109.5
C7—N3—C13 121.3 (3) N1—C12—H12B 109.5
C7—N3—C16 117.4 (3) H12A—C12—H12B 109.5
C13—N3—C16 110.8 (3) N1—C12—H12C 109.5
C14—N4—C15 110.1 (3) H12A—C12—H12C 109.5
C14—N4—C17 111.2 (4) H12B—C12—H12C 109.5
C15—N4—C17 111.6 (4) N3—C13—C14 108.0 (4)
O2—C1—O1 120.9 (4) N3—C13—H13A 110.1
O2—C1—C2 123.9 (4) C14—C13—H13A 110.1
O1—C1—C2 115.2 (4) N3—C13—H13B 110.1
C10—C2—C3 121.6 (3) C14—C13—H13B 110.1
C10—C2—C1 116.6 (3) H13A—C13—H13B 108.4
C3—C2—C1 121.7 (4) N4—C14—C13 111.6 (4)
O3—C3—C2 123.6 (3) N4—C14—H14A 109.3
O3—C3—C4 120.3 (3) C13—C14—H14A 109.3
C2—C3—C4 116.0 (3) N4—C14—H14B 109.3
C5—C4—C11 118.8 (3) C13—C14—H14B 109.3
C5—C4—C3 121.6 (4) H14A—C14—H14B 108.0
C11—C4—C3 119.6 (3) N4—C15—C16 111.0 (4)
C6—C5—C4 119.0 (4) N4—C15—H15A 109.4
C6—C5—H5 120.5 C16—C15—H15A 109.4
C4—C5—H5 120.5 N4—C15—H15B 109.4
F1—C6—C5 118.2 (3) C16—C15—H15B 109.4
F1—C6—C7 117.0 (3) H15A—C15—H15B 108.0
C5—C6—C7 124.8 (3) N3—C16—C15 109.4 (4)
N3—C7—C8 119.3 (3) N3—C16—H16A 109.8
N3—C7—C6 125.6 (3) C15—C16—H16A 109.8
C8—C7—C6 115.1 (3) N3—C16—H16B 109.8
O4—C8—C7 118.6 (3) C15—C16—H16B 109.8
O4—C8—C11 119.9 (3) H16A—C16—H16B 108.2
C7—C8—C11 121.5 (3) N4—C17—H17A 109.5
N1—C9—O4 112.4 (3) N4—C17—H17B 109.5
N1—C9—H9A 109.1 H17A—C17—H17B 109.5
O4—C9—H9A 109.1 N4—C17—H17C 109.5
N1—C9—H9B 109.1 H17A—C17—H17C 109.5
O4—C9—H9B 109.1 H17B—C17—H17C 109.5
C9—N1—N2—C10 147.4 (4) N3—C7—C8—C11 177.4 (4)
C12—N1—N2—C10 −88.8 (4) C6—C7—C8—C11 −1.6 (6)
C9—N1—N2—C11 −36.1 (5) N2—N1—C9—O4 62.1 (4)
C12—N1—N2—C11 87.7 (4) C12—N1—C9—O4 −59.3 (4)
O2—C1—C2—C10 −3.8 (7) C8—O4—C9—N1 −56.7 (4)
O1—C1—C2—C10 176.1 (4) C11—N2—C10—C2 0.7 (6)
O2—C1—C2—C3 179.1 (4) N1—N2—C10—C2 177.0 (4)
O1—C1—C2—C3 −1.0 (6) C3—C2—C10—N2 −1.8 (6)
C10—C2—C3—O3 178.9 (4) C1—C2—C10—N2 −178.9 (4)
C1—C2—C3—O3 −4.2 (6) C10—N2—C11—C4 2.2 (6)
C10—C2—C3—C4 0.0 (6) N1—N2—C11—C4 −174.1 (3)
C1—C2—C3—C4 177.0 (4) C10—N2—C11—C8 −178.1 (4)
O3—C3—C4—C5 3.6 (6) N1—N2—C11—C8 5.6 (5)
C2—C3—C4—C5 −177.5 (4) C5—C4—C11—N2 176.4 (4)
O3—C3—C4—C11 −176.1 (4) C3—C4—C11—N2 −3.9 (6)
C2—C3—C4—C11 2.8 (5) C5—C4—C11—C8 −3.3 (6)
C11—C4—C5—C6 1.5 (6) C3—C4—C11—C8 176.4 (4)
C3—C4—C5—C6 −178.2 (4) O4—C8—C11—N2 2.0 (6)
C4—C5—C6—F1 178.3 (4) C7—C8—C11—N2 −176.2 (4)
C4—C5—C6—C7 0.2 (7) O4—C8—C11—C4 −178.3 (3)
C13—N3—C7—C8 −148.1 (4) C7—C8—C11—C4 3.4 (6)
C16—N3—C7—C8 70.4 (5) C7—N3—C13—C14 157.3 (4)
C13—N3—C7—C6 30.9 (6) C16—N3—C13—C14 −58.9 (5)
C16—N3—C7—C6 −110.7 (5) C15—N4—C14—C13 −59.0 (5)
F1—C6—C7—N3 2.7 (6) C17—N4—C14—C13 176.7 (3)
C5—C6—C7—N3 −179.2 (4) N3—C13—C14—N4 59.4 (5)
F1—C6—C7—C8 −178.3 (3) C14—N4—C15—C16 57.3 (5)
C5—C6—C7—C8 −0.2 (6) C17—N4—C15—C16 −178.7 (4)
C9—O4—C8—C7 −159.0 (4) C7—N3—C16—C15 −156.2 (3)
C9—O4—C8—C11 22.7 (5) C13—N3—C16—C15 58.4 (5)
N3—C7—C8—O4 −0.8 (6) N4—C15—C16—N3 −56.9 (5)
C6—C7—C8—O4 −179.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 0.83 (3) 1.77 (2) 2.560 (4) 159 (5)
C12—H12B···F1i 0.96 2.62 3.422 (3) 140 (4)
C15—H15B···F1ii 0.97 2.54 3.446 (3) 155 (5)

Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2019).

References

  1. Carlotti, D. N., Guaguere, E., Pin, D., Jasmin, P., Thomas, E. & Guiral, V. (1999). J. Small Anim. Pract 40, 265–270. [DOI] [PubMed]
  2. Dossin, O., Gruet, P. & Thomas, E. (1998). J. Small Anim. Pract 39, 286–289. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Ishak, A. M., Dowers, K. L., Cavanaugh, M. T., Powell, C. C., Hawley, J. R., Radecki, S. V. & Lappin, M. R. (2008). J. Vet. Intern. Med. 22, 288–292. [DOI] [PubMed]
  7. Lefebvre, H. P., Schneider, M., Dupouy, V., Laroute, V., Costes, G., Delesalle, L. & Toutain, P. L. (1998). J. Vet. Pharmacol. Ther. 21, 453–461. [DOI] [PubMed]
  8. Paradis, M., Abbey, L., Baker, B., Coyne, M., Hannigan, M., Joffe, D., Pukay, B., Trettien, A., Waisglass, S. & Wellington, J. (2001). Vet. Dermatol. 12, 163–169. [DOI] [PubMed]
  9. Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku (2007). CrystalStructure Rigaku, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spreng, M., Deleforge, J., Thomas, V., Boisrame, B. & Drugeon, H. (1995). J. Vet. Pharmacol. Ther. 18, 284–289. [DOI] [PubMed]
  13. Thomas, E., Caldow, G. L., Borell, D. & Davot, J. L. (2001). J. Vet. Pharmacol. Ther. 24, 353–358. [DOI] [PubMed]
  14. Voermans, M., van Soest, J. M., van Duijkeren, E. & Ensink, J. M. (2006). J. Vet. Pharmacol. Ther. 29, 555–560. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009312/nr2019sup1.cif

e-68-0o998-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009312/nr2019Isup2.hkl

e-68-0o998-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009312/nr2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES