Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1000. doi: 10.1107/S1600536812009051

2-Amino-4-(4-chloro­phen­yl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile

S Antony Inglebert a, Jayabal Kamalraja b, K Sethusankar c,*, Gnanasambandam Vasuki b
PMCID: PMC3343967  PMID: 22589876

Abstract

In the title compound, C17H14ClN5, two C atoms and their attached H atoms of the pyrrolidine ring are disordered over two sets of sites with an occupancy ratio of 0.638 (10):0.362 (10). The benzene and pyridine rings are inclined to one another by 60.57 (8)°. In the crystal, the amino group forms an N—H⋯N hydrogen bond with one of the cyano groups, linking the mol­ecules into chains along [010].

Related literature  

For a similar compound, see: Inglebert et al. (2011). For related structures, see: Chao et al. (1975); Kvick et al. (1976). For bond-length data, see: Atoji & Lipscomb (1953). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1000-scheme1.jpg

Experimental  

Crystal data  

  • C17H14ClN5

  • M r = 323.77

  • Triclinic, Inline graphic

  • a = 7.318 (5) Å

  • b = 9.060 (5) Å

  • c = 12.011 (5) Å

  • α = 87.196 (5)°

  • β = 80.477 (5)°

  • γ = 83.795 (5)°

  • V = 780.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.916, T max = 0.939

  • 6077 measured reflections

  • 3570 independent reflections

  • 1887 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.097

  • S = 0.85

  • 3570 reflections

  • 237 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009051/rk2335sup1.cif

e-68-o1000-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009051/rk2335Isup2.hkl

e-68-o1000-Isup2.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009051/rk2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N4i 0.92 (1) 2.12 (1) 2.992 (3) 160 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the SAIF, IIT, Chennai, India, for the data collection. SAIB and KS also thank Dr V. Murugan, Head of of the Physics Department, RKM Vivekananda College, Chennai, India, for providing computational facilities to carry out this research work.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in hetrocyclic chemistry. Pyridine containing compounds are the new class of anti–HIV molecules, which particularly inhibit RNA dependent DNA polymerase or reverse transcriptace and thus act as non–nucleoside reverse transcriptace inhibitors. They also exhibit cytotoxic, anti–cancer, anti–tumour and anti–bacterial activity.

The pyrrolidine ring adopts a twisted conformation in both the major and minor conformers (occupancy factors of 0.638 (10)/0.362 (10) respectively). Puckering parameters (Cremer & Pople, 1975) are q2 and φ2, of 0.422 (6)Å and 273.9 (4)° for the major conformer (N5/C15/C16/C17/C18) and 0.469 (10)Å and 86.4 (6)°, respectively, for the minor conformer (N5/C15/C16'/C17'/C18).

The bond lengths of the nitrile groups attached to pyridine ring are typical (N4≡C11 = 1.148 (2)Å and C9≡N3 = 1.142 (2)Å). The nitrile groups form angles with parent C atoms: 177.1 (2)° and 174.5 (2)°. The sum angles around the atom C12 are slightly less 360° (real 358.0 (2)°) - deformed by the amino group, as seen in other aminopyridines (Chao et al., 1975; Kvick et al., 1976). This behaviour characterizes the resonance of the N2 lone pair with the aromatic ring. The effect can also be verified by the shortening of the C12—N2 bond (1.345 (2)Å) relative to a normal single C—N bond (1.483Å for C—N in methaneamine (Atoji & Lipscomb, 1953).

The amino group is planar with the pyridine ring as indicated by the torsion angle N2—C12—N1—C13 = 179.75 (16)°. The chlorine atom attached at C1 deviates by -0.0817 (3)Å from the mean plane of the phenyl ring. The title structure exhibits structural similarities with the previously reported structure (Inglebert et al., 2011).

In the crystal structure, the classical intermolecular N2—H2B···N4i hydrogen bonds link the molecules into chains along the b axis. Symmetry code: (i) x, y+1, z.

Experimental

A mixture of 4–chlorobenzaldehyde (2 mmoL, 0.28 g), malononitrile (3 mmoL, 0.198 g), pyrrolidine (1.5 mmoL, 0.1 g) was stirred without any solvent at room temperature. A solid appeared immediately which has dissolved in a minimum amount (3 ml) of ethanol and the solution was refluxed until completion of the reaction (monitered by TLC). The reaction mixture was cooled. Ethanol was evaporated under reduced pressure and the residue was extracted with dicholoromethane (3×10 ml). Evaporation of solvent left the crude solid which was subjected to silica gel column chromatography [25:75 ethyl acetate/hexane] and the product was recrysallized from dichloromethane.

Refinement

H atoms attached to C atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93Å (aromatic H) and C—H = 0.97Å (methylene H) Uiso(H) = 1.2Ueq(C). H atoms of amino group were located from difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius. The minor occupancy disordered atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, which shows intermolecular N2—H2B···N4i interactions (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C17H14ClN5 Z = 2
Mr = 323.77 F(000) = 336
Triclinic, P1 Dx = 1.378 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.318 (5) Å Cell parameters from 3570 reflections
b = 9.060 (5) Å θ = 2.8–29.3°
c = 12.011 (5) Å µ = 0.25 mm1
α = 87.196 (5)° T = 295 K
β = 80.477 (5)° Block, colourless
γ = 83.795 (5)° 0.35 × 0.30 × 0.25 mm
V = 780.4 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3570 independent reflections
Radiation source: fine-focus sealed tube 1887 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scans θmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.916, Tmax = 0.939 k = −12→11
6077 measured reflections l = −15→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3
S = 0.85 (Δ/σ)max = 0.001
3570 reflections Δρmax = 0.20 e Å3
237 parameters Δρmin = −0.24 e Å3
11 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7572 (3) 0.0214 (2) 1.33801 (16) 0.0432 (5)
C2 0.9078 (3) 0.1010 (2) 1.30733 (17) 0.0459 (5)
H2 1.0082 0.0866 1.3465 0.055*
C3 0.9092 (3) 0.2024 (2) 1.21800 (16) 0.0390 (5)
H3 1.0107 0.2572 1.1977 0.047*
C4 0.7624 (2) 0.22397 (19) 1.15801 (14) 0.0311 (4)
C5 0.6137 (3) 0.1396 (2) 1.18885 (16) 0.0409 (5)
H5 0.5149 0.1510 1.1484 0.049*
C6 0.6108 (3) 0.0393 (2) 1.27858 (17) 0.0486 (5)
H6 0.5101 −0.0163 1.2990 0.058*
C7 0.7579 (2) 0.34351 (18) 1.06767 (15) 0.0287 (4)
C8 0.7651 (2) 0.48942 (18) 1.09633 (15) 0.0299 (4)
C9 0.7812 (3) 0.5310 (2) 1.20691 (18) 0.0383 (5)
C10 0.7429 (2) 0.31384 (18) 0.95678 (14) 0.0288 (4)
C11 0.7380 (3) 0.1630 (2) 0.93015 (15) 0.0368 (5)
C12 0.7507 (2) 0.60362 (18) 1.01258 (15) 0.0291 (4)
C13 0.7366 (2) 0.43534 (19) 0.87573 (15) 0.0297 (4)
N5 0.7283 (2) 0.42030 (16) 0.76655 (12) 0.0364 (4)
C18 0.7235 (3) 0.5492 (2) 0.68715 (16) 0.0519 (6)
H18A 0.8436 0.5884 0.6720 0.062*
H18B 0.6299 0.6271 0.7177 0.062*
C17 0.6766 (10) 0.4927 (6) 0.5828 (4) 0.0567 (15) 0.638 (10)
H17A 0.7199 0.5533 0.5169 0.068* 0.638 (10)
H17B 0.5437 0.4872 0.5884 0.068* 0.638 (10)
C16 0.7840 (11) 0.3389 (7) 0.5805 (4) 0.0657 (18) 0.638 (10)
H16A 0.9162 0.3446 0.5558 0.079* 0.638 (10)
H16B 0.7389 0.2747 0.5310 0.079* 0.638 (10)
C17' 0.7780 (18) 0.4694 (13) 0.5745 (7) 0.068 (3) 0.361 (10)
H17C 0.7346 0.5301 0.5135 0.082* 0.362 (10)
H17D 0.9121 0.4476 0.5566 0.082* 0.362 (10)
C16' 0.6834 (18) 0.3273 (12) 0.5927 (8) 0.061 (3) 0.362 (10)
H16C 0.7328 0.2556 0.5352 0.073* 0.362 (10)
H16D 0.5492 0.3453 0.5982 0.073* 0.362 (10)
N1 0.73637 (19) 0.57681 (15) 0.90682 (12) 0.0323 (4)
N2 0.7503 (2) 0.74643 (18) 1.03834 (16) 0.0440 (4)
N3 0.7954 (3) 0.5758 (2) 1.29203 (16) 0.0641 (6)
N4 0.7312 (3) 0.04021 (19) 0.91349 (15) 0.0589 (5)
C15 0.7437 (4) 0.2824 (2) 0.70643 (18) 0.0634 (7)
H15A 0.6287 0.2354 0.7221 0.076*
H15B 0.8451 0.2130 0.7257 0.076*
Cl1 0.74935 (9) −0.10029 (6) 1.45478 (5) 0.0728 (2)
H2A 0.759 (2) 0.771 (2) 1.1096 (10) 0.048 (6)*
H2B 0.745 (3) 0.8223 (17) 0.9853 (14) 0.066 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0684 (14) 0.0303 (11) 0.0283 (11) −0.0027 (10) −0.0039 (10) 0.0067 (9)
C2 0.0557 (13) 0.0439 (12) 0.0387 (12) −0.0010 (10) −0.0146 (10) 0.0077 (10)
C3 0.0415 (11) 0.0378 (11) 0.0385 (12) −0.0088 (9) −0.0076 (9) 0.0051 (9)
C4 0.0398 (11) 0.0271 (9) 0.0256 (10) −0.0039 (8) −0.0034 (8) 0.0015 (8)
C5 0.0487 (12) 0.0400 (11) 0.0370 (12) −0.0138 (9) −0.0116 (9) 0.0056 (9)
C6 0.0612 (13) 0.0420 (12) 0.0434 (13) −0.0218 (10) −0.0029 (11) 0.0084 (10)
C7 0.0281 (9) 0.0274 (10) 0.0307 (10) −0.0048 (7) −0.0050 (8) 0.0030 (8)
C8 0.0330 (10) 0.0300 (10) 0.0270 (10) −0.0056 (8) −0.0044 (8) −0.0009 (8)
C9 0.0478 (12) 0.0321 (11) 0.0352 (12) −0.0076 (9) −0.0064 (9) 0.0022 (9)
C10 0.0337 (10) 0.0251 (9) 0.0274 (10) −0.0044 (8) −0.0041 (8) 0.0000 (8)
C11 0.0504 (12) 0.0305 (11) 0.0285 (11) −0.0044 (9) −0.0044 (9) 0.0035 (8)
C12 0.0288 (10) 0.0254 (10) 0.0329 (11) −0.0023 (8) −0.0047 (8) −0.0007 (8)
C13 0.0306 (10) 0.0300 (10) 0.0287 (11) −0.0034 (8) −0.0054 (8) −0.0006 (8)
N5 0.0507 (10) 0.0339 (9) 0.0257 (9) −0.0057 (7) −0.0090 (7) −0.0005 (7)
C18 0.0719 (15) 0.0521 (13) 0.0318 (12) −0.0033 (11) −0.0136 (11) 0.0086 (10)
C17 0.059 (3) 0.083 (3) 0.031 (2) −0.018 (3) −0.015 (3) 0.0128 (19)
C16 0.108 (5) 0.064 (3) 0.029 (2) −0.019 (4) −0.011 (3) −0.007 (2)
C17' 0.076 (8) 0.093 (8) 0.041 (5) −0.027 (7) −0.019 (5) 0.014 (4)
C16' 0.073 (7) 0.071 (6) 0.038 (4) −0.009 (5) −0.006 (5) −0.008 (4)
N1 0.0412 (9) 0.0268 (8) 0.0297 (9) −0.0040 (7) −0.0089 (7) 0.0027 (7)
N2 0.0700 (12) 0.0262 (9) 0.0384 (11) −0.0060 (8) −0.0158 (9) −0.0027 (8)
N3 0.0930 (15) 0.0639 (13) 0.0390 (12) −0.0137 (11) −0.0146 (11) −0.0101 (10)
N4 0.0976 (15) 0.0308 (10) 0.0480 (12) −0.0093 (10) −0.0091 (10) −0.0003 (9)
C15 0.1068 (19) 0.0471 (14) 0.0404 (14) −0.0073 (13) −0.0214 (13) −0.0100 (11)
Cl1 0.1163 (6) 0.0539 (4) 0.0454 (4) −0.0100 (3) −0.0114 (3) 0.0240 (3)

Geometric parameters (Å, º)

C1—C2 1.372 (3) C13—N1 1.352 (2)
C1—C6 1.374 (3) N5—C15 1.458 (3)
C1—Cl1 1.7385 (19) N5—C18 1.472 (2)
C2—C3 1.377 (3) C18—C17 1.481 (5)
C2—H2 0.9300 C18—C17' 1.538 (8)
C3—C4 1.382 (2) C18—H18A 0.9700
C3—H3 0.9300 C18—H18B 0.9700
C4—C5 1.388 (2) C17—C16 1.523 (7)
C4—C7 1.497 (2) C17—H17A 0.9700
C5—C6 1.374 (3) C17—H17B 0.9700
C5—H5 0.9300 C16—C15 1.564 (5)
C6—H6 0.9300 C16—H16A 0.9700
C7—C8 1.391 (2) C16—H16B 0.9700
C7—C10 1.396 (2) C17'—C16' 1.517 (9)
C8—C12 1.415 (2) C17'—H17C 0.9700
C8—C9 1.425 (3) C17'—H17D 0.9700
C9—N3 1.143 (2) C16'—C15 1.527 (8)
C10—C11 1.424 (3) C16'—H16C 0.9700
C10—C13 1.435 (2) C16'—H16D 0.9700
C11—N4 1.147 (2) N2—H2A 0.907 (9)
C12—N1 1.328 (2) N2—H2B 0.916 (9)
C12—N2 1.345 (2) C15—H15A 0.9700
C13—N5 1.337 (2) C15—H15B 0.9700
C2—C1—C6 120.58 (18) C17'—C18—H18A 87.7
C2—C1—Cl1 119.71 (16) N5—C18—H18B 110.6
C6—C1—Cl1 119.71 (16) C17—C18—H18B 110.6
C1—C2—C3 119.43 (18) C17'—C18—H18B 136.3
C1—C2—H2 120.3 H18A—C18—H18B 108.8
C3—C2—H2 120.3 C18—C17—C16 100.5 (4)
C2—C3—C4 121.07 (18) C18—C17—H17A 111.7
C2—C3—H3 119.5 C16—C17—H17A 111.7
C4—C3—H3 119.5 C18—C17—H17B 111.7
C3—C4—C5 118.45 (17) C16—C17—H17B 111.7
C3—C4—C7 120.55 (16) H17A—C17—H17B 109.4
C5—C4—C7 120.84 (16) C17—C16—C15 103.0 (4)
C6—C5—C4 120.70 (18) C17—C16—H16A 111.2
C6—C5—H5 119.7 C15—C16—H16A 111.2
C4—C5—H5 119.7 C17—C16—H16B 111.2
C1—C6—C5 119.75 (19) C15—C16—H16B 111.2
C1—C6—H6 120.1 H16A—C16—H16B 109.1
C5—C6—H6 120.1 C16'—C17'—C18 105.0 (7)
C8—C7—C10 119.14 (16) C16'—C17'—H17C 110.7
C8—C7—C4 118.54 (16) C18—C17'—H17C 110.7
C10—C7—C4 122.30 (16) C16'—C17'—H17D 110.7
C7—C8—C12 118.67 (16) C18—C17'—H17D 110.7
C7—C8—C9 123.41 (16) H17C—C17'—H17D 108.8
C12—C8—C9 117.90 (16) C17'—C16'—C15 96.3 (7)
N3—C9—C8 174.5 (2) C17'—C16'—H16C 112.5
C7—C10—C11 117.62 (15) C15—C16'—H16C 112.5
C7—C10—C13 118.72 (15) C17'—C16'—H16D 112.5
C11—C10—C13 123.66 (16) C15—C16'—H16D 112.5
N4—C11—C10 177.1 (2) H16C—C16'—H16D 110.0
N1—C12—N2 117.00 (16) C12—N1—C13 119.72 (15)
N1—C12—C8 122.72 (16) C12—N2—H2A 120.3 (12)
N2—C12—C8 120.28 (17) C12—N2—H2B 122.1 (13)
N5—C13—N1 114.88 (15) H2A—N2—H2B 117.5 (18)
N5—C13—C10 124.18 (16) N5—C15—C16' 105.3 (5)
N1—C13—C10 120.93 (16) N5—C15—C16 101.7 (3)
C13—N5—C15 127.41 (16) C16'—C15—C16 27.8 (3)
C13—N5—C18 121.73 (15) N5—C15—H15A 111.4
C15—N5—C18 110.50 (16) C16'—C15—H15A 84.8
N5—C18—C17 105.5 (3) C16—C15—H15A 111.4
N5—C18—C17' 99.8 (5) N5—C15—H15B 111.4
C17—C18—C17' 28.3 (4) C16'—C15—H15B 131.2
N5—C18—H18A 110.6 C16—C15—H15B 111.4
C17—C18—H18A 110.6 H15A—C15—H15B 109.3
C6—C1—C2—C3 1.8 (3) C7—C10—C13—N1 −3.1 (2)
Cl1—C1—C2—C3 −176.95 (15) C11—C10—C13—N1 178.08 (16)
C1—C2—C3—C4 −0.8 (3) N1—C13—N5—C15 173.81 (18)
C2—C3—C4—C5 −0.8 (3) C10—C13—N5—C15 −7.1 (3)
C2—C3—C4—C7 174.70 (17) N1—C13—N5—C18 1.3 (2)
C3—C4—C5—C6 1.4 (3) C10—C13—N5—C18 −179.57 (17)
C7—C4—C5—C6 −174.06 (17) C13—N5—C18—C17 −168.9 (3)
C2—C1—C6—C5 −1.2 (3) C15—N5—C18—C17 17.4 (4)
Cl1—C1—C6—C5 177.55 (15) C13—N5—C18—C17' 162.6 (5)
C4—C5—C6—C1 −0.5 (3) C15—N5—C18—C17' −11.1 (5)
C3—C4—C7—C8 −57.7 (2) N5—C18—C17—C16 −37.2 (6)
C5—C4—C7—C8 117.6 (2) C17'—C18—C17—C16 44.7 (9)
C3—C4—C7—C10 123.59 (19) C18—C17—C16—C15 43.0 (8)
C5—C4—C7—C10 −61.0 (2) N5—C18—C17'—C16' 37.4 (11)
C10—C7—C8—C12 2.1 (2) C17—C18—C17'—C16' −67.1 (10)
C4—C7—C8—C12 −176.63 (16) C18—C17'—C16'—C15 −47.4 (13)
C10—C7—C8—C9 −179.69 (16) N2—C12—N1—C13 179.75 (15)
C4—C7—C8—C9 1.6 (3) C8—C12—N1—C13 −0.5 (2)
C8—C7—C10—C11 179.32 (16) N5—C13—N1—C12 −177.73 (15)
C4—C7—C10—C11 −2.0 (2) C10—C13—N1—C12 3.1 (2)
C8—C7—C10—C13 0.4 (2) C13—N5—C15—C16' 168.2 (5)
C4—C7—C10—C13 179.06 (16) C18—N5—C15—C16' −18.6 (5)
C7—C8—C12—N1 −2.2 (2) C13—N5—C15—C16 −163.4 (3)
C9—C8—C12—N1 179.51 (16) C18—N5—C15—C16 9.8 (4)
C7—C8—C12—N2 177.60 (17) C17'—C16'—C15—N5 39.5 (11)
C9—C8—C12—N2 −0.7 (2) C17'—C16'—C15—C16 −46.5 (9)
C7—C10—C13—N5 177.84 (15) C17—C16—C15—N5 −32.6 (7)
C11—C10—C13—N5 −1.0 (3) C17—C16—C15—C16' 68.1 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N4i 0.92 (1) 2.12 (1) 2.992 (3) 160 (2)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2335).

References

  1. Atoji, M. & Lipscomb, W. N. (1953). Acta Cryst. 6, 770–774.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2924–2926.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354—1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Inglebert, S. A., Kamalraja, J., Vasuki, G. & Sethusankar, K. (2011). Acta Cryst. E67, o1972. [DOI] [PMC free article] [PubMed]
  7. Kvick, Å., Thomas, R. & Koetzle, T. F. (1976). Acta Cryst. B32, 224–231.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009051/rk2335sup1.cif

e-68-o1000-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009051/rk2335Isup2.hkl

e-68-o1000-Isup2.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009051/rk2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES