Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1002. doi: 10.1107/S1600536812009099

(E)-N′-(4-Isopropyl­benzyl­idene)isonicotinohydrazide monohydrate

Mashooq A Bhat a, Hatem A Abdel-Aziz a, Hazem A Ghabbour a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3343969  PMID: 22589878

Abstract

In the title compound, C16H17N3O·H2O, the isonicotinohydrazide mol­ecule adopts an E conformation about the central C=N double bond. The dihedral angle between the pyridine and the benzene rings is 54.56 (15)°. In the crystal, mol­ecules are connected via N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For details and the biological activity of isoniazide, see: Bloom & Murray (1992); Loenhout-Rooyackers & Veen (1998); Hearn et al. (2009); Tripathi et al. (2011).graphic file with name e-68-o1002-scheme1.jpg

Experimental  

Crystal data  

  • C16H17N3O·H2O

  • M r = 285.34

  • Orthorhombic, Inline graphic

  • a = 7.7503 (2) Å

  • b = 11.7894 (3) Å

  • c = 17.2820 (4) Å

  • V = 1579.08 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.89 × 0.19 × 0.13 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.594, T max = 0.920

  • 6473 measured reflections

  • 2939 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.145

  • S = 1.04

  • 2939 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009099/cv5248sup1.cif

e-68-o1002-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009099/cv5248Isup2.hkl

e-68-o1002-Isup2.hkl (141.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009099/cv5248Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯O1W 0.85 1.90 2.757 (3) 176
O1W—H1W1⋯N1i 0.85 2.03 2.861 (3) 164
O1W—H2W1⋯O1ii 0.84 2.00 2.779 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MAB, HAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In the last decade, tuberculosis (TB) has reemerged as one of the leading causes of death in the world, reaching nearly three million deaths annually (Bloom & Murray, 1992). Therefore, the search for new drugs for tuberculosis is of the utmost importance. Treatment regimens are based on a long-term and combined chemotherapy. The most used first-choice drug is isoniazid, a bactericidal drug that acts both intracellularly in the macrophages and extracellularly in the necrotic tissue (Loenhout-Rooyackers & Veen, 1998). The derivatives of isoniazid have been found to possess potential tuberculostatic activity (Hearn et al., 2009; Tripathi et al., 2011). Herein, we present the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one N'-(4-isopropylbenzylidene) isonicotinohydrazide molecule and one water molecule (Fig. 1). The molecule adopts an E configuration about the central C7═N3 double bond. The dihedral angle between the pyridine (N1/C1–C5) and the benzene (C8–C13) rings is 54.56 (15)°. The hydrazine group is twisted slightly, with a C5-C6-N2-N3 torsion angle of -178.9 (2)°.

In the crystal, the molecules are connected via N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1), forming a three-dimensional networks (Fig. 2).

Experimental

The title compound was prepared by the reaction of 4-isopropyl benzaldehyde (0.15 g, 1 mmol) with isoniazid (0.14 g, 1 mmol) in EtOH (25 mL). After stirring for 3 h, at room temperature, the resulting mixture was concentrated. The precipitate was washed with EtOH to afford the title compound. Colourless blocks of the title compound suitable for X-ray structure determination were recrystallized from EtOH by the slow evaporation of the solvent at room temperature.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å; O–H = 0.84–0.85 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C, O). A rotating group model was applied to the methyl groups Even though there is sufficient anomalous dispersion to find the absolute configuration as the compound crystallize out in a chiral space group and Cu radiation was used, this was unsuccessful as the crystal is a inversion twin [BASF ratio of 0.8 (4):0.2 (4)].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. Hydrogen bond is shown by dashed line.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.

Crystal data

C16H17N3O·H2O F(000) = 608
Mr = 285.34 Dx = 1.200 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 1751 reflections
a = 7.7503 (2) Å θ = 4.5–65.6°
b = 11.7894 (3) Å µ = 0.65 mm1
c = 17.2820 (4) Å T = 296 K
V = 1579.08 (7) Å3 Block, colourless
Z = 4 0.89 × 0.19 × 0.13 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2939 independent reflections
Radiation source: fine-focus sealed tube 2499 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 71.8°, θmin = 4.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→8
Tmin = 0.594, Tmax = 0.920 k = −13→10
6473 measured reflections l = −20→21

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.3351P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.22 e Å3
2939 reflections Δρmin = −0.28 e Å3
193 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0045 (8)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 1072 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.8 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1044 (3) −0.05606 (15) 0.18186 (11) 0.0761 (6)
N1 1.1036 (4) 0.1562 (2) −0.06565 (14) 0.0839 (8)
H1N1 0.9718 0.1817 0.2093 0.101*
N2 1.0132 (3) 0.11714 (17) 0.22203 (11) 0.0573 (5)
N3 1.0056 (3) 0.08469 (18) 0.29864 (11) 0.0578 (5)
C1 1.1390 (4) 0.1925 (2) 0.06922 (16) 0.0666 (7)
H1A 1.1742 0.2420 0.1080 0.080*
C2 1.1526 (5) 0.2221 (3) −0.00740 (18) 0.0785 (9)
H2A 1.1990 0.2927 −0.0192 0.094*
C3 1.0378 (5) 0.0560 (3) −0.04701 (17) 0.0835 (9)
H3A 1.0012 0.0089 −0.0869 0.100*
C4 1.0204 (4) 0.0177 (2) 0.02743 (15) 0.0670 (7)
H4A 0.9750 −0.0538 0.0374 0.080*
C5 1.0715 (3) 0.0872 (2) 0.08717 (13) 0.0536 (5)
C6 1.0648 (3) 0.0424 (2) 0.16813 (14) 0.0555 (6)
C7 0.9297 (3) 0.1536 (2) 0.34324 (14) 0.0571 (6)
H7A 0.8811 0.2185 0.3217 0.069*
C8 0.9143 (3) 0.1369 (2) 0.42615 (13) 0.0515 (5)
C9 0.9887 (4) 0.0448 (2) 0.46475 (15) 0.0604 (6)
H9A 1.0450 −0.0113 0.4366 0.072*
C10 0.9792 (4) 0.0366 (2) 0.54362 (15) 0.0689 (7)
H10A 1.0299 −0.0253 0.5680 0.083*
C11 0.8961 (4) 0.1178 (2) 0.58831 (15) 0.0692 (7)
C12 0.8237 (4) 0.2085 (3) 0.54993 (16) 0.0699 (7)
H12A 0.7684 0.2649 0.5783 0.084*
C13 0.8312 (4) 0.2176 (2) 0.47065 (15) 0.0611 (6)
H13A 0.7793 0.2792 0.4465 0.073*
C14 0.8851 (9) 0.1105 (4) 0.67642 (19) 0.1318 (19)
H14A 0.7599 0.1151 0.6836 0.158*
C15 0.9192 (7) −0.0015 (4) 0.7099 (2) 0.1196 (15)
H15A 0.8882 −0.0011 0.7637 0.179*
H15B 1.0396 −0.0190 0.7048 0.179*
H15C 0.8521 −0.0576 0.6832 0.179*
C16 0.9387 (9) 0.2120 (5) 0.7158 (2) 0.149 (2)
H16A 0.8925 0.2121 0.7674 0.223*
H16B 0.8968 0.2771 0.6883 0.223*
H16C 1.0624 0.2145 0.7181 0.223*
O1W 0.8651 (3) 0.32125 (15) 0.18150 (11) 0.0822 (7)
H1W1 0.7748 0.3209 0.1531 0.123*
H2W1 0.8803 0.3754 0.2127 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1132 (16) 0.0556 (10) 0.0594 (10) 0.0199 (10) 0.0095 (11) 0.0108 (9)
N1 0.114 (2) 0.0893 (18) 0.0484 (12) 0.0015 (16) 0.0134 (14) 0.0090 (12)
N2 0.0738 (13) 0.0546 (12) 0.0436 (10) 0.0047 (10) 0.0017 (9) 0.0057 (8)
N3 0.0726 (13) 0.0566 (12) 0.0443 (10) 0.0010 (10) −0.0025 (9) 0.0063 (9)
C1 0.0849 (17) 0.0594 (15) 0.0555 (14) −0.0062 (13) 0.0094 (13) −0.0003 (12)
C2 0.107 (2) 0.0670 (18) 0.0617 (17) −0.0041 (16) 0.0213 (16) 0.0106 (14)
C3 0.113 (3) 0.086 (2) 0.0525 (15) −0.0043 (19) −0.0001 (16) −0.0066 (14)
C4 0.0819 (18) 0.0642 (16) 0.0547 (14) −0.0060 (14) 0.0020 (13) 0.0000 (12)
C5 0.0623 (13) 0.0537 (13) 0.0448 (11) 0.0029 (11) 0.0079 (10) 0.0043 (10)
C6 0.0638 (13) 0.0541 (14) 0.0486 (12) 0.0022 (11) 0.0030 (11) 0.0030 (10)
C7 0.0697 (14) 0.0512 (13) 0.0504 (13) 0.0021 (12) −0.0057 (11) 0.0055 (10)
C8 0.0559 (11) 0.0526 (13) 0.0462 (11) 0.0002 (10) −0.0027 (10) 0.0009 (9)
C9 0.0750 (16) 0.0530 (13) 0.0531 (13) 0.0117 (12) 0.0005 (12) 0.0027 (10)
C10 0.0871 (19) 0.0657 (16) 0.0538 (14) 0.0139 (14) −0.0047 (13) 0.0083 (12)
C11 0.0913 (19) 0.0708 (17) 0.0455 (13) 0.0007 (15) 0.0039 (13) −0.0005 (12)
C12 0.0798 (18) 0.0674 (16) 0.0624 (16) 0.0095 (14) 0.0115 (13) −0.0081 (14)
C13 0.0659 (15) 0.0567 (14) 0.0607 (14) 0.0118 (12) −0.0004 (12) 0.0022 (11)
C14 0.238 (6) 0.108 (3) 0.0494 (18) 0.018 (4) 0.006 (3) 0.0001 (19)
C15 0.149 (4) 0.149 (4) 0.0615 (19) −0.022 (3) 0.008 (2) 0.034 (2)
C16 0.204 (5) 0.180 (5) 0.062 (2) −0.002 (5) −0.027 (3) −0.026 (3)
O1W 0.1251 (18) 0.0586 (11) 0.0628 (11) 0.0163 (11) −0.0286 (12) −0.0119 (9)

Geometric parameters (Å, º)

O1—C6 1.224 (3) C9—C10 1.368 (3)
N1—C3 1.326 (4) C9—H9A 0.9300
N1—C2 1.327 (4) C10—C11 1.389 (4)
N2—C6 1.343 (3) C10—H10A 0.9300
N2—N3 1.379 (3) C11—C12 1.377 (4)
N2—H1N1 0.8550 C11—C14 1.528 (4)
N3—C7 1.266 (3) C12—C13 1.376 (4)
C1—C2 1.373 (4) C12—H12A 0.9300
C1—C5 1.383 (4) C13—H13A 0.9300
C1—H1A 0.9300 C14—C16 1.438 (6)
C2—H2A 0.9300 C14—C15 1.465 (6)
C3—C4 1.370 (4) C14—H14A 0.9800
C3—H3A 0.9300 C15—H15A 0.9600
C4—C5 1.376 (4) C15—H15B 0.9600
C4—H4A 0.9300 C15—H15C 0.9600
C5—C6 1.496 (3) C16—H16A 0.9600
C7—C8 1.451 (3) C16—H16B 0.9600
C7—H7A 0.9300 C16—H16C 0.9600
C8—C13 1.382 (3) O1W—H1W1 0.8541
C8—C9 1.398 (3) O1W—H2W1 0.8437
C3—N1—C2 116.6 (3) C9—C10—C11 122.0 (3)
C6—N2—N3 119.78 (19) C9—C10—H10A 119.0
C6—N2—H1N1 121.2 C11—C10—H10A 119.0
N3—N2—H1N1 118.5 C12—C11—C10 117.1 (2)
C7—N3—N2 115.2 (2) C12—C11—C14 120.1 (3)
C2—C1—C5 118.3 (3) C10—C11—C14 122.7 (3)
C2—C1—H1A 120.9 C13—C12—C11 121.5 (3)
C5—C1—H1A 120.9 C13—C12—H12A 119.2
N1—C2—C1 124.1 (3) C11—C12—H12A 119.2
N1—C2—H2A 117.9 C12—C13—C8 121.4 (3)
C1—C2—H2A 117.9 C12—C13—H13A 119.3
N1—C3—C4 124.0 (3) C8—C13—H13A 119.3
N1—C3—H3A 118.0 C16—C14—C15 120.7 (4)
C4—C3—H3A 118.0 C16—C14—C11 114.1 (4)
C3—C4—C5 118.7 (3) C15—C14—C11 115.8 (3)
C3—C4—H4A 120.7 C16—C14—H14A 100.3
C5—C4—H4A 120.7 C15—C14—H14A 100.3
C4—C5—C1 118.4 (2) C11—C14—H14A 100.3
C4—C5—C6 118.8 (2) C14—C15—H15A 109.5
C1—C5—C6 122.6 (2) C14—C15—H15B 109.5
O1—C6—N2 124.2 (2) H15A—C15—H15B 109.5
O1—C6—C5 120.5 (2) C14—C15—H15C 109.5
N2—C6—C5 115.3 (2) H15A—C15—H15C 109.5
N3—C7—C8 123.5 (2) H15B—C15—H15C 109.5
N3—C7—H7A 118.2 C14—C16—H16A 109.5
C8—C7—H7A 118.2 C14—C16—H16B 109.5
C13—C8—C9 117.4 (2) H16A—C16—H16B 109.5
C13—C8—C7 119.6 (2) C14—C16—H16C 109.5
C9—C8—C7 122.9 (2) H16A—C16—H16C 109.5
C10—C9—C8 120.5 (2) H16B—C16—H16C 109.5
C10—C9—H9A 119.7 H1W1—O1W—H2W1 119.0
C8—C9—H9A 119.7
C6—N2—N3—C7 −169.0 (3) N3—C7—C8—C13 179.0 (3)
C3—N1—C2—C1 0.0 (5) N3—C7—C8—C9 2.7 (4)
C5—C1—C2—N1 0.6 (5) C13—C8—C9—C10 −0.3 (4)
C2—N1—C3—C4 −0.9 (5) C7—C8—C9—C10 176.0 (3)
N1—C3—C4—C5 1.0 (5) C8—C9—C10—C11 0.2 (5)
C3—C4—C5—C1 −0.3 (4) C9—C10—C11—C12 −0.4 (5)
C3—C4—C5—C6 −175.6 (3) C9—C10—C11—C14 −179.6 (4)
C2—C1—C5—C4 −0.4 (4) C10—C11—C12—C13 0.8 (5)
C2—C1—C5—C6 174.7 (3) C14—C11—C12—C13 −179.9 (4)
N3—N2—C6—O1 1.3 (4) C11—C12—C13—C8 −1.1 (5)
N3—N2—C6—C5 −178.9 (2) C9—C8—C13—C12 0.8 (4)
C4—C5—C6—O1 38.5 (4) C7—C8—C13—C12 −175.7 (3)
C1—C5—C6—O1 −136.6 (3) C12—C11—C14—C16 −50.3 (7)
C4—C5—C6—N2 −141.4 (3) C10—C11—C14—C16 128.9 (5)
C1—C5—C6—N2 43.6 (4) C12—C11—C14—C15 162.9 (4)
N2—N3—C7—C8 −177.5 (2) C10—C11—C14—C15 −17.9 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N1···O1W 0.85 1.90 2.757 (3) 176
O1W—H1W1···N1i 0.85 2.03 2.861 (3) 164
O1W—H2W1···O1ii 0.84 2.00 2.779 (3) 154

Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5248).

References

  1. Bloom, B. R. & Murray, C. J. (1992). Science, 21, 1055–1064. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169–4178. [DOI] [PMC free article] [PubMed]
  4. Loenhout-Rooyackers, J. H. & Veen, J. (1998). Neth. J. Med. 53, 7–14. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Tripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509–518. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009099/cv5248sup1.cif

e-68-o1002-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009099/cv5248Isup2.hkl

e-68-o1002-Isup2.hkl (141.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009099/cv5248Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES