Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1009–o1010. doi: 10.1107/S1600536812009403

N-(2-Formyl­phen­yl)-4-toluene­sulfonamide: a second monoclinic polymorph

S Murugavel a,*, N Manikandan b, D Kannan c, M Bakthadoss c,
PMCID: PMC3343975  PMID: 22589884

Abstract

The title compound, C14H13NO3S, (I), is a second monoclinic polymorph. The original polymorph, (II), was reported by Mahía et al. [Acta Cryst. (1999), C55, 2158–2160]. Polymorph (II) crystalllized in the space group P21/c (Z = 4), whereas the title polymorph (I) occurs in the space group P21/n (Z = 4). The dihedral angle between the two aromatic rings is 75.9 (1)° in (I) compared to 81.9 (1)° for (II). In both polymorphs, two S(6) rings are generated by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds, resulting in similar mol­ecular geometries. However, the two polymorphs differ concerning their crystal packing. In (I), mol­ecules are linked into C(8) zigzag chains along the b axis by C—H⋯O hydrogen bonds, whereas in (II) mol­ecules are linked by C—H⋯O hydrogen bonds, forming C(7) chains along the b axis. The title polymorph is further stabilized by inter­molecular C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.814 (1) Å]. These inter­actions are not evident in polymorph (II).

Related literature  

For biological applications of sulfonamides, see: Connor (1998); Berredjem et al. (2000); Lee & Lee (2002); Xiao & Timberlake (2000). For the first monoclinic polymorph, see: Mahía et al. (1999). For a related structure, see: Zhang et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1009-scheme1.jpg

Experimental  

Crystal data  

  • C14H13NO3S

  • M r = 275.31

  • Monoclinic, Inline graphic

  • a = 11.5409 (4) Å

  • b = 8.1345 (2) Å

  • c = 14.1115 (5) Å

  • β = 97.294 (2)°

  • V = 1314.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.940, T max = 0.956

  • 16047 measured reflections

  • 4254 independent reflections

  • 2678 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.155

  • S = 1.02

  • 4254 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009403/im2360sup1.cif

e-68-o1009-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009403/im2360Isup2.hkl

e-68-o1009-Isup2.hkl (204.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009403/im2360Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.94 2.655 (2) 140
C2—H2⋯O2 0.93 2.48 3.059 (2) 120
C14—H14C⋯O3i 0.96 2.52 3.439 (3) 161
C5—H5⋯Cg1ii 0.93 2.82 3.658 (2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Sulfonamides are an important category of pharmaceutical compounds with a broad spectrum of biological activities such as herbicidal, anti-malarial, anti-convulsant and anti-hypertensive (Connor, 1998; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002). In this work we report the crystal structure of the title compound (Fig 1, Alternative name: 2–tosylaminobenzaldehyde), which is the second monoclinic polymorph reported.

The original polymorph (compound (II)) was previously reported by Mahía et al. (1999) and was shown to crystallize in the monoclinic space group P21/c, with a = 13.899 (7), b = 8.237 (4), c = 12.063 (6) Å, β = 105.899 (1)° and Z = 4. In the present work, the title compound crystallized in the space group P21/n with a = 11.5409 (4), b = 8.1345 (2), c = 14.1115 (5) Å, β = 97.294 (2)° and Z = 4. The dihedral angle between the two aromatic rings is 75.9 (1)° in (I) compared to 81.9 (1)° for (II). The bond distances in the molecule are normal and comparable to those in the previously published polymorph and in a closely related sulfonamide derivative (Zhang et al., 2010).

In both polymorphs, the molecular packing is stabilized by intramolecular N1—H1···O1 and C2—H2···O2 hydrogen bonds, generating two S(6) rings (Bernstein et al., 1995) (Table 1). However, the two polymorphs differ concerning their crystal packing. In compound (II) molecules are linked to form C(7) chains along the b axis by intermolecular C3—H3···O3 hydrogen bonds whereas in the title compound (I), molecules are linked by intermolecular C14—H14C···O3 hydrogen bonds to form C(8) zigzag chains along the b axis (Fig. 2). The crystal packing (Fig. 3) is further stabilized by C—H···π interactions between a formylphenyl H atom and the benzene ring (C8–C13) of a neighbouring molecule, with a C5—H5···Cg1ii distance of 3.658 (2) Å (Table 1; Cg1 is the centroid of the C8–C13 benzene ring, Symmetry code: ii = 1 - x, 1 - y, -z). Additional stability arises from aromatic π—π interaction between the benzene rings of neighbouring molecules, with Cg2—Cg2ii distance of 3.814 (1) Å (Fig. 3; Cg2 is the centroid of the C1—C6 benzene ring, Symmetry code: ii = 1 - x, 1 - y, -z). The C—H···π and π—π interactions are not evident in compound (II).

Experimental

To a stirred solution of (2-aminophenyl)methanol in chloroform, 1.5 equiv of pyridine and 1.5 equiv of 4-methylbenzene-1-sulfonyl chloride were added at room temperature over a period of 18 h. The resulting brown colored solution was quenched with aqueous HCl. After workup a pale brownish solid was obtained. The combined organic fractions were dried over Na2SO4 and partially concentrated under reduced pressure at 25°C. The product was precipitated with diethylether. Further, MnO2 was added to a solution of 2-tosylaminobenzyl alcohol in dry 1,2-dichloroethane solvent under nitrogen atmosphere. The suspension was stirred at 80°C in reflux condition for 5 h and filtered through Celite. The filtrate was partially concentrated on a rotatory evaporator at 25°C and the product was precipitated with diethylether. Recystallization of the product from CH2Cl2 yielded pale yellow crystals of the title compound (Yield: 86%). Crystals of the original polymorph were prepared by evaporation of CHCl3 from a solution of the title compound at room temperature (Mahía et al., 1999).

Refinement

H atoms were positioned geometrically (N–H = 0.86 Å and C–H = 0.93–0.96 Å and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing C—H···O hydrogen bonds (blue dotted lines), with the formation of C(8) chains along the b axis. [Symmetry codes: (i) x, 1 + y, z; (iii) x, 2 + y, z].

Fig. 3.

Fig. 3.

A view of the C—H···π and π—π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroids of the C8–C13 benzene ring and C1–C6 benzene ring, respectively. [Symmetry code: (ii) 1 - x, 1 - y, -z].

Crystal data

C14H13NO3S F(000) = 576
Mr = 275.31 Dx = 1.392 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4561 reflections
a = 11.5409 (4) Å θ = 2.2–32.0°
b = 8.1345 (2) Å µ = 0.25 mm1
c = 14.1115 (5) Å T = 293 K
β = 97.294 (2)° Block, pale yellow
V = 1314.06 (7) Å3 0.25 × 0.23 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4254 independent reflections
Radiation source: fine-focus sealed tube 2678 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 10.0 pixels mm-1 θmax = 32.0°, θmin = 2.2°
ω scans h = −15→16
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −11→12
Tmin = 0.940, Tmax = 0.956 l = −16→21
16047 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2545P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4254 reflections Δρmax = 0.30 e Å3
174 parameters Δρmin = −0.40 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.52951 (5) 0.12891 (6) 0.23059 (3) 0.06087 (19)
C1 0.56496 (14) 0.25944 (19) 0.05828 (10) 0.0454 (4)
C6 0.51658 (14) 0.27675 (19) −0.03793 (11) 0.0472 (4)
N1 0.50096 (14) 0.1677 (2) 0.11710 (10) 0.0566 (4)
H1 0.4372 0.1256 0.0892 0.068*
C5 0.57925 (17) 0.3623 (2) −0.10019 (12) 0.0580 (4)
H5 0.5484 0.3721 −0.1641 0.070*
O1 0.33743 (12) 0.13376 (18) −0.03182 (11) 0.0708 (4)
C8 0.49992 (15) 0.3098 (2) 0.29018 (11) 0.0497 (4)
C13 0.58899 (15) 0.4156 (2) 0.32385 (12) 0.0563 (4)
H13 0.6657 0.3916 0.3151 0.068*
C7 0.40286 (17) 0.2107 (2) −0.07598 (13) 0.0608 (5)
H7 0.3780 0.2293 −0.1404 0.073*
C2 0.67100 (15) 0.3343 (2) 0.08926 (12) 0.0556 (4)
H2 0.7026 0.3273 0.1531 0.067*
O2 0.65042 (14) 0.0934 (2) 0.25269 (11) 0.0804 (5)
C11 0.45109 (18) 0.5950 (2) 0.38535 (13) 0.0614 (5)
C12 0.56359 (17) 0.5566 (3) 0.37043 (14) 0.0627 (5)
H12 0.6239 0.6281 0.3925 0.075*
C4 0.68487 (18) 0.4321 (3) −0.06949 (15) 0.0640 (5)
H4 0.7262 0.4877 −0.1120 0.077*
C10 0.36292 (18) 0.4862 (3) 0.35138 (15) 0.0680 (5)
H10 0.2864 0.5098 0.3608 0.082*
O3 0.44396 (17) 0.0087 (2) 0.24676 (12) 0.0891 (5)
C3 0.72931 (17) 0.4190 (2) 0.02550 (15) 0.0612 (5)
H3 0.8004 0.4686 0.0470 0.073*
C9 0.38592 (17) 0.3451 (3) 0.30435 (14) 0.0626 (5)
H9 0.3257 0.2736 0.2821 0.075*
C14 0.4263 (3) 0.7500 (3) 0.43715 (17) 0.0867 (7)
H14A 0.4874 0.7685 0.4888 0.130*
H14B 0.3530 0.7394 0.4620 0.130*
H14C 0.4226 0.8412 0.3937 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0805 (4) 0.0561 (3) 0.0451 (2) 0.0081 (2) 0.0047 (2) 0.00904 (18)
C1 0.0500 (9) 0.0445 (8) 0.0410 (7) 0.0082 (7) 0.0029 (6) −0.0031 (6)
C6 0.0532 (9) 0.0437 (8) 0.0427 (8) 0.0071 (7) −0.0011 (6) −0.0044 (6)
N1 0.0595 (9) 0.0669 (9) 0.0423 (7) −0.0054 (7) 0.0017 (6) 0.0015 (6)
C5 0.0707 (12) 0.0595 (10) 0.0421 (8) 0.0054 (8) 0.0008 (8) 0.0025 (7)
O1 0.0607 (8) 0.0794 (10) 0.0696 (9) −0.0118 (7) −0.0021 (7) −0.0111 (7)
C8 0.0514 (9) 0.0599 (9) 0.0378 (7) 0.0042 (7) 0.0054 (6) 0.0084 (7)
C13 0.0441 (9) 0.0767 (12) 0.0476 (9) 0.0044 (8) 0.0039 (7) 0.0005 (8)
C7 0.0642 (12) 0.0651 (11) 0.0489 (9) 0.0029 (9) −0.0086 (8) −0.0085 (8)
C2 0.0519 (10) 0.0678 (11) 0.0445 (8) 0.0046 (8) −0.0039 (7) −0.0020 (7)
O2 0.0930 (11) 0.0843 (10) 0.0605 (8) 0.0407 (8) −0.0041 (7) 0.0065 (7)
C11 0.0777 (13) 0.0623 (11) 0.0476 (9) 0.0109 (9) 0.0218 (9) 0.0132 (8)
C12 0.0633 (11) 0.0707 (12) 0.0548 (10) −0.0064 (9) 0.0098 (8) −0.0037 (9)
C4 0.0695 (12) 0.0635 (11) 0.0608 (11) −0.0013 (9) 0.0150 (9) 0.0072 (9)
C10 0.0535 (11) 0.0891 (15) 0.0649 (12) 0.0125 (10) 0.0210 (9) 0.0108 (10)
O3 0.1354 (14) 0.0640 (9) 0.0700 (10) −0.0193 (9) 0.0206 (9) 0.0124 (7)
C3 0.0514 (10) 0.0642 (11) 0.0672 (12) −0.0025 (8) 0.0043 (8) −0.0027 (9)
C9 0.0498 (10) 0.0785 (13) 0.0606 (11) −0.0063 (9) 0.0115 (8) 0.0067 (9)
C14 0.128 (2) 0.0684 (13) 0.0712 (14) 0.0182 (14) 0.0426 (14) 0.0085 (11)

Geometric parameters (Å, º)

S1—O2 1.4204 (16) C7—H7 0.9300
S1—O3 1.4285 (16) C2—C3 1.375 (3)
S1—N1 1.6245 (14) C2—H2 0.9300
S1—C8 1.7500 (18) C11—C12 1.377 (3)
C1—C2 1.387 (2) C11—C10 1.387 (3)
C1—N1 1.395 (2) C11—C14 1.503 (3)
C1—C6 1.408 (2) C12—H12 0.9300
C6—C5 1.393 (2) C4—C3 1.377 (3)
C6—C7 1.456 (3) C4—H4 0.9300
N1—H1 0.8600 C10—C9 1.369 (3)
C5—C4 1.364 (3) C10—H10 0.9300
C5—H5 0.9300 C3—H3 0.9300
O1—C7 1.212 (2) C9—H9 0.9300
C8—C13 1.378 (3) C14—H14A 0.9600
C8—C9 1.386 (3) C14—H14B 0.9600
C13—C12 1.372 (3) C14—H14C 0.9600
C13—H13 0.9300
O2—S1—O3 120.36 (11) C3—C2—C1 119.95 (16)
O2—S1—N1 109.05 (9) C3—C2—H2 120.0
O3—S1—N1 103.45 (9) C1—C2—H2 120.0
O2—S1—C8 108.16 (9) C12—C11—C10 117.85 (19)
O3—S1—C8 108.55 (9) C12—C11—C14 120.4 (2)
N1—S1—C8 106.44 (8) C10—C11—C14 121.76 (19)
C2—C1—N1 124.04 (14) C13—C12—C11 121.71 (19)
C2—C1—C6 119.08 (15) C13—C12—H12 119.1
N1—C1—C6 116.87 (15) C11—C12—H12 119.1
C5—C6—C1 118.94 (15) C5—C4—C3 118.96 (18)
C5—C6—C7 117.88 (15) C5—C4—H4 120.5
C1—C6—C7 123.17 (16) C3—C4—H4 120.5
C1—N1—S1 129.33 (12) C9—C10—C11 121.57 (18)
C1—N1—H1 115.3 C9—C10—H10 119.2
S1—N1—H1 115.3 C11—C10—H10 119.2
C4—C5—C6 121.47 (16) C2—C3—C4 121.53 (18)
C4—C5—H5 119.3 C2—C3—H3 119.2
C6—C5—H5 119.3 C4—C3—H3 119.2
C13—C8—C9 120.11 (18) C10—C9—C8 119.3 (2)
C13—C8—S1 120.54 (13) C10—C9—H9 120.3
C9—C8—S1 119.35 (15) C8—C9—H9 120.3
C12—C13—C8 119.45 (17) C11—C14—H14A 109.5
C12—C13—H13 120.3 C11—C14—H14B 109.5
C8—C13—H13 120.3 H14A—C14—H14B 109.5
O1—C7—C6 126.30 (17) C11—C14—H14C 109.5
O1—C7—H7 116.9 H14A—C14—H14C 109.5
C6—C7—H7 116.9 H14B—C14—H14C 109.5
C2—C1—C6—C5 2.9 (2) C9—C8—C13—C12 −0.8 (3)
N1—C1—C6—C5 −177.73 (15) S1—C8—C13—C12 −179.94 (14)
C2—C1—C6—C7 −176.46 (16) C5—C6—C7—O1 −179.95 (18)
N1—C1—C6—C7 2.9 (2) C1—C6—C7—O1 −0.6 (3)
C2—C1—N1—S1 1.3 (3) N1—C1—C2—C3 178.36 (16)
C6—C1—N1—S1 −178.02 (13) C6—C1—C2—C3 −2.3 (3)
O2—S1—N1—C1 −41.57 (18) C8—C13—C12—C11 0.6 (3)
O3—S1—N1—C1 −170.79 (16) C10—C11—C12—C13 −0.2 (3)
C8—S1—N1—C1 74.91 (17) C14—C11—C12—C13 179.64 (18)
C1—C6—C5—C4 −1.3 (3) C6—C5—C4—C3 −0.9 (3)
C7—C6—C5—C4 178.06 (17) C12—C11—C10—C9 −0.1 (3)
O2—S1—C8—C13 18.43 (17) C14—C11—C10—C9 −179.92 (19)
O3—S1—C8—C13 150.58 (15) C1—C2—C3—C4 0.1 (3)
N1—S1—C8—C13 −98.64 (15) C5—C4—C3—C2 1.5 (3)
O2—S1—C8—C9 −160.77 (14) C11—C10—C9—C8 −0.1 (3)
O3—S1—C8—C9 −28.61 (16) C13—C8—C9—C10 0.5 (3)
N1—S1—C8—C9 82.16 (15) S1—C8—C9—C10 179.68 (15)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C8–C13 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.94 2.655 (2) 140
C2—H2···O2 0.93 2.48 3.059 (2) 120
C14—H14C···O3i 0.96 2.52 3.439 (3) 161
C5—H5···Cg1ii 0.93 2.82 3.658 (2) 150

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2360).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Berredjem, M., Regainia, Z., Djahoudi, A., Aouf, N.-E., Dewynter, G. & Montero, J.-L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.
  3. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Connor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32–35.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.
  7. Mahía, J., Maestro, M., Vázquez, M., Bermejo, M. R., González, A. M. & Maneiro, M. (1999). Acta Cryst. C55, 2158–2160.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.
  12. Zhang, G.-Y., Chen, D.-J., Guo, X.-Y., Wang, S.-H. & Chang, J.-G. (2010). Acta Cryst. E66, o346. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009403/im2360sup1.cif

e-68-o1009-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009403/im2360Isup2.hkl

e-68-o1009-Isup2.hkl (204.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009403/im2360Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES