Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1014. doi: 10.1107/S1600536812009646

4,7,8-Trimethyl-2H-chromen-2-one

Jian-Xin Yang a,*, Xue-Mei Tan a, Xiang-Hui Wang b, Yin Wang a
PMCID: PMC3343979  PMID: 22589888

Abstract

The mol­ecule of the title compound, C12H12O2, is essentially planar, with a maximum deviation from the mean plane of all non-H atoms of 0.038 (1) Å for the methyl C atom in the 8-position. The crystal structure is characterized by anti­parallel π–π stacking along the c axis, with centroid–centroid distances as short as 3.866 (1) Å. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules across the stacks into ribbons in the a-axis direction.

Related literature  

For general background to the pharmacological activity of coumarin derivatives, see: Xie et al. (2001); Tanitame et al. (2004); Shao et al. (1997); Rendenbach-Müller et al. (1994); Pochet et al. (1996). For a related structure, see: Gowda et al. (2010).graphic file with name e-68-o1014-scheme1.jpg

Experimental  

Crystal data  

  • C12H12O2

  • M r = 188.22

  • Monoclinic, Inline graphic

  • a = 7.276 (3) Å

  • b = 18.075 (6) Å

  • c = 7.246 (3) Å

  • β = 97.055 (5)°

  • V = 945.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.44 × 0.31 × 0.26 mm

Data collection  

  • Rigaku AFC10/Saturn724+ diffractometer

  • 8545 measured reflections

  • 2747 independent reflections

  • 2176 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.112

  • S = 1.00

  • 2747 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009646/ld2048sup1.cif

e-68-o1014-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009646/ld2048Isup2.hkl

e-68-o1014-Isup2.hkl (134.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009646/ld2048Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.56 3.460 (2) 159
C10—H10C⋯O2ii 0.98 2.54 3.493 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of the Hainan University 211 Project.

supplementary crystallographic information

Comment

Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV (Xie et al., 2001), antibacterial (Tanitame et al., 2004), antioxidant (Shao et al., 1997), antithrombotic (Rendenbach-Müller et al., 1994) and antiinflammatory (Pochet et al., 1996) activities.

The molecular structure is shown in Fig. 1. In the crystal the molecules are linked by C—H···O hydrogen bonds to form ribbon-like motives (Table 1 and Fig. 2).

Experimental

2,3-Dimethyl phenol (10.50 mmol) was slowly added at 278–288 K to a mixture of para-toluenesulfonic acid (0.5 g) and acetylacetic ester (10.50 mmol) while stirring for 30 min. The reaction mixture was stirred continuously for 12 more hours at room temperature and then poured into ice–water mixture (100 ml). The obtained solid was filtered off, washed with cold water and dried at room temperature. Colorless crystals of the title compound suitable for X-ray structure analysis were obtained by slow evaporation of a solution in the mixture of ethanol/ether over a period of two days.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) (aromatic) and Uiso(H) = 1.5Ueq(C) (methyl). The positions of the methyl H atoms were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

H-bonding in the crystals of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

π–π stacking in the crystal of te title compound.

Crystal data

C12H12O2 F(000) = 400
Mr = 188.22 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.276 (3) Å Cell parameters from 3283 reflections
b = 18.075 (6) Å θ = 2.3–30.0°
c = 7.246 (3) Å µ = 0.09 mm1
β = 97.055 (5)° T = 153 K
V = 945.8 (6) Å3 Prism, colorless
Z = 4 0.44 × 0.31 × 0.26 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 2176 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.028
Graphite monochromator θmax = 30.1°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1 h = −9→10
phi and ω scans k = −24→25
8545 measured reflections l = −10→10
2747 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.551P] where P = (Fo2 + 2Fc2)/3
2747 reflections (Δ/σ)max = 0.001
130 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H2 0.8364 0.0375 0.9962 0.029*
H5 0.4346 0.2356 0.8389 0.030*
H6 0.4708 0.3629 0.8497 0.030*
H10A 0.5336 0.0381 0.8616 0.035*
H10B 0.4726 0.1097 0.7392 0.035*
H10C 0.4183 0.1026 0.9459 0.035*
H11A 0.6432 0.4698 0.9153 0.037*
H11B 0.8581 0.4625 0.8914 0.037*
H11C 0.7941 0.4634 1.0949 0.037*
H12A 1.1505 0.3139 1.1756 0.036*
H12B 1.0632 0.3953 1.1693 0.036*
H12C 1.1483 0.3633 0.9921 0.036*
C1 1.01364 (18) 0.12436 (7) 1.07922 (18) 0.0243 (3)
C2 0.84235 (18) 0.08992 (7) 1.00252 (18) 0.0244 (3)
C3 0.69054 (18) 0.12937 (7) 0.93951 (18) 0.0224 (3)
C4 0.69972 (17) 0.20939 (7) 0.94548 (17) 0.0207 (2)
C5 0.55137 (18) 0.25623 (7) 0.88512 (19) 0.0248 (3)
C6 0.57298 (19) 0.33200 (7) 0.89207 (19) 0.0251 (3)
C7 0.74262 (18) 0.36425 (7) 0.96038 (18) 0.0234 (3)
C8 0.89411 (18) 0.31925 (7) 1.02295 (18) 0.0221 (3)
C9 0.86750 (17) 0.24271 (7) 1.01382 (17) 0.0206 (2)
C10 0.51347 (19) 0.09170 (8) 0.8651 (2) 0.0296 (3)
C11 0.7611 (2) 0.44726 (7) 0.9660 (2) 0.0305 (3)
C12 1.08022 (19) 0.35066 (8) 1.0964 (2) 0.0299 (3)
O1 1.02050 (12) 0.20031 (5) 1.07807 (13) 0.0240 (2)
O2 1.15405 (14) 0.09227 (6) 1.14331 (15) 0.0338 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0259 (6) 0.0213 (6) 0.0259 (6) 0.0034 (5) 0.0042 (5) −0.0003 (5)
C2 0.0277 (7) 0.0189 (6) 0.0268 (6) −0.0011 (5) 0.0041 (5) −0.0012 (5)
C3 0.0246 (6) 0.0225 (6) 0.0205 (6) −0.0035 (5) 0.0040 (5) −0.0007 (5)
C4 0.0213 (6) 0.0211 (6) 0.0200 (6) −0.0004 (4) 0.0038 (5) −0.0002 (5)
C5 0.0202 (6) 0.0273 (6) 0.0262 (6) −0.0003 (5) 0.0001 (5) 0.0003 (5)
C6 0.0238 (6) 0.0258 (6) 0.0254 (6) 0.0048 (5) 0.0014 (5) 0.0024 (5)
C7 0.0276 (6) 0.0204 (6) 0.0223 (6) 0.0014 (5) 0.0039 (5) 0.0018 (5)
C8 0.0223 (6) 0.0222 (6) 0.0220 (6) −0.0010 (5) 0.0028 (5) 0.0000 (5)
C9 0.0196 (6) 0.0209 (6) 0.0214 (6) 0.0018 (4) 0.0025 (5) 0.0007 (5)
C10 0.0283 (7) 0.0267 (7) 0.0329 (7) −0.0080 (5) 0.0006 (6) −0.0005 (6)
C11 0.0366 (8) 0.0209 (6) 0.0335 (8) 0.0024 (5) 0.0016 (6) 0.0023 (5)
C12 0.0265 (7) 0.0257 (7) 0.0359 (7) −0.0052 (5) −0.0021 (6) −0.0010 (6)
O1 0.0205 (4) 0.0212 (4) 0.0296 (5) 0.0020 (3) −0.0004 (4) 0.0000 (4)
O2 0.0287 (5) 0.0271 (5) 0.0439 (6) 0.0075 (4) −0.0030 (4) −0.0006 (4)

Geometric parameters (Å, º)

C1—C2 1.4421 (19) C8—C12 1.5042 (18)
C2—H2 0.9500 C10—H10A 0.9800
C2—C3 1.3465 (18) C10—H10B 0.9800
C3—C4 1.4484 (18) C10—H10C 0.9800
C3—C10 1.4979 (18) C11—H11A 0.9800
C4—C5 1.3990 (18) C11—H11B 0.9800
C4—C9 1.3964 (17) C11—H11C 0.9800
C5—H5 0.9500 C12—H12A 0.9800
C5—C6 1.3788 (19) C12—H12B 0.9800
C6—H6 0.9500 C12—H12C 0.9800
C6—C7 1.3994 (19) O1—C1 1.3739 (16)
C7—C8 1.3998 (18) O1—C9 1.3842 (15)
C7—C11 1.5067 (19) O2—C1 1.2163 (16)
C8—C9 1.3973 (18)
O1—C1—C2 117.34 (11) C9—C8—C12 120.26 (12)
O2—C1—C2 125.95 (13) C4—C9—C8 123.63 (11)
O2—C1—O1 116.71 (12) O1—C9—C4 120.83 (11)
C1—C2—H2 118.8 O1—C9—C8 115.54 (11)
C3—C2—H2 118.8 H10A—C10—H10B 109.5
C3—C2—C1 122.43 (12) H10A—C10—H10C 109.5
C2—C3—C4 119.07 (12) H10B—C10—H10C 109.5
C2—C3—C10 120.99 (12) C3—C10—H10A 109.5
C4—C3—C10 119.94 (12) C3—C10—H10B 109.5
C5—C4—C3 124.33 (12) C3—C10—H10C 109.5
C9—C4—C3 118.45 (11) H11A—C11—H11B 109.5
C9—C4—C5 117.21 (12) H11A—C11—H11C 109.5
C4—C5—H5 119.7 H11B—C11—H11C 109.5
C6—C5—H5 119.7 C7—C11—H11A 109.5
C6—C5—C4 120.63 (12) C7—C11—H11B 109.5
C5—C6—H6 119.4 C7—C11—H11C 109.5
C5—C6—C7 121.22 (12) H12A—C12—H12B 109.5
C7—C6—H6 119.4 H12A—C12—H12C 109.5
C6—C7—C8 119.86 (12) H12B—C12—H12C 109.5
C6—C7—C11 119.76 (12) C8—C12—H12A 109.5
C8—C7—C11 120.39 (12) C8—C12—H12B 109.5
C7—C8—C12 122.29 (12) C8—C12—H12C 109.5
C9—C8—C7 117.45 (12) C1—O1—C9 121.80 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.95 2.56 3.460 (2) 159
C10—H10C···O2ii 0.98 2.54 3.493 (2) 164

Symmetry codes: (i) −x+2, −y, −z+2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2048).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Gowda, R., Gowda, K. V. A., Basanagouda, M. & Kulkarni, M. V. (2010). Acta Cryst. E66, o3352. [DOI] [PMC free article] [PubMed]
  3. Pochet, L., Doucet, C., Schynts, M., Thierry, N., Boggeto, N., Pirotte, B., Jiang, K. Y., Masereel, B., Tulio, P. D., Delarge, J. & Reboud-Ravaux, M. (1996). J. Med. Chem. 39, 2579–2585. [DOI] [PubMed]
  4. Rendenbach-Müller, B., Schelcker, R., Traut, M. & Weifenbach, H. (1994). Bioorg. Med. Chem. Lett. 4, 1195–1198.
  5. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Shao, X., Ekstrand, D. H. L., Bhikhabhai, R., Kallander, C. F. R. & Gronowitz, J. S. (1997). Antivir. Chem. Chemother. 8, 149–159. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–, 3696. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Xie, L., Takeuchi, Y., Cosentino, L. M., McPhail, A. T. & Lee, K. H. (2001). J. Med. Chem. 44, 664–671. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009646/ld2048sup1.cif

e-68-o1014-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009646/ld2048Isup2.hkl

e-68-o1014-Isup2.hkl (134.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009646/ld2048Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES