Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1025. doi: 10.1107/S1600536812009294

Dimethyl dl-2,3-dibenzyl-2,3-diisothio­cyanatosuccinate

Justyna Kalinowska-Tłuścik a,*, Dariusz Cież a, Sandrine Peyrat a
PMCID: PMC3343989  PMID: 22589898

Abstract

The title compound, C22H20N2O4S2, has approximate mol­ecular twofold symmetry. In the crystal, the presence of C—H⋯π inter­actions leads to the formation of zigzag chains along [001].

Related literature  

For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007). For the synthesis, spectroscopic characterization and crystal structure determination of similar compounds, see: Cież et al. (2008). For diisothio­cyanates, see: Morel & Marchand (2001). For C—H⋯ π and C—H⋯O inter­actions, see: Malone et al. (1997); Arunan et al. (2011a ,b ).graphic file with name e-68-o1025-scheme1.jpg

Experimental  

Crystal data  

  • C22H20N2O4S2

  • M r = 440.52

  • Monoclinic, Inline graphic

  • a = 9.1658 (1) Å

  • b = 19.3999 (4) Å

  • c = 12.2762 (2) Å

  • β = 97.891 (1)°

  • V = 2162.23 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.18 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) T min = 0.926, T max = 0.952

  • 9175 measured reflections

  • 4868 independent reflections

  • 4124 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.090

  • S = 1.05

  • 4868 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009294/fj2516sup1.cif

e-68-o1025-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009294/fj2516Isup2.hkl

e-68-o1025-Isup2.hkl (233.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009294/fj2516Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812009294/fj2516Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C38—H21CCgi 0.98 2.61 3.461 (2) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Professor Barbara J. Oleksyn for constructive comments and suggestions.

supplementary crystallographic information

Comment

The title compound was synthesized as a part of a larger project focusing on the synthesis of 2,3-disubstituted 2,3-diaminosuccinic acid derivatives obtained from titanium (IV) enolates of 2-isothiocyanato-carboxylates via C—C bond formation in oxidative homo-coupling of titanium (IV) enolates of 2-isothiocyanato-carboxylic esters (Cież, 2007; Cież et al., 2008). The main reason for the interest in vicinal diisothiocyanates is related to their wide application in organic syntheses (Morel & Marchand, 2001). The molecule, crystal structure of which is presented here, belongs to the rare class of organic compounds.

The overall shape of the title molecule is shown in Figure 1. There is pseudo-symmetry in the molecule (2-fold axis perpendicular to C2—C3 bond and parallel to [212]). The mutual orientation of both isothiocyanate groups, same as both benzyl groups, is gauche with dihedral angels N1—C2—C3—N2 = 73.95 (13)° and C21—C2—C3—C31 = 43.41 (16)°. The ester groups are oriented in anti conformation with dihedral angle C1—C2—C3—C4 = 158.31 (11)°.

There are two chiral centres in the molecule, localized on atoms C2 and C3, both with the same absolute configuration (R,R enantiomer shown in Figure1).

The crystal structure of the title compound is stabilized by weak interactions. The strongest are C—H···π interactions (Arunan et al., 2011a; Arunan et al., 2011b; Malone et al., 1997). They are formed between molecules related via glide plane c. The distance between hydrogen atom and centroid of the aromatic ring (Cg) is 2.611Å, with angle C38—H···Cg = 145.17°. The additionally defined angle of approach of the vector HCg to the plane of the aromatic ring, θ = 77°, and horizontal distance 0.6Å, classify this C—H···π as the second common geometry for this type of interaction observed in crystal structures (type III according to Malone et al., 1997). Intermolecular C—H···π interactions between neighbouring molecules observed in this structure form a zigzag-like chain in the [001] direction (Figure 2), where only one aromatic ring of the title molecule is involved.

Additional interaction is observed between C31—H···O4i [where (i) is x, -y + 1/2, z + 1/2] with C···O = 2.985 (2)Å, H···O = 2.612Å and angle C—H···O = 102.35°. The parameter suggests that it is not a hydrogen bond (Arunan et al., 2011a; Arunan et al., 2011b), however this interaction plays a crucial role in the stabilization of the methyl group (C38), allowing for above mentioned C—H···π. What is interesting, the sulphur atoms of the thiocyanate groups are not involved in intermolecular interactions.

The second aromatic moiety of the DL-2,3-dibenzyl-2,3-diisothiocyanato-succinic acid dimethyl ester is not involved in C—H···π. It is placed in short distance to a corresponding ring of the neighbouring molecule, related via the inversion centre (C24···C24ii = 3.390 (2)Å, where (ii) is -x + 2, -y, -z + 2). However, the overlapping of the aromatic rings is not observed. This suggests a hydrophobic association.

Experimental

The title compound was obtained by oxidative homo-coupling of methyl (S)-2-isothiocyanato-3-phenyl-propionate in TiCl4/DIEA (N,N-diisopropylethylamine) system at 177 K and characterized by NMR spectroscopy (Cież, 2007). Colourless, block single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation of solvent at ambient conditions.

Refinement

All non-hydrogen atoms were refined anisotropically using weighted full-matrix least-squares on F2. All hydrogen atoms were calculated at idealized positions and refined using a riding model with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl groups refined as rotating group.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound - here R,R - enantiomer, showing the molecule conformation. Atom displacement ellipsoids drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Chain formed by C—H···π interacting molecules, propagating in the [001] direction.

Crystal data

C22H20N2O4S2 F(000) = 920
Mr = 440.52 Dx = 1.353 Mg m3
Monoclinic, P21/c Melting point: 405(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.7107 Å
a = 9.1658 (1) Å Cell parameters from 8876 reflections
b = 19.3999 (4) Å θ = 1.0–27.5°
c = 12.2762 (2) Å µ = 0.28 mm1
β = 97.891 (1)° T = 100 K
V = 2162.23 (6) Å3 Block, colourless
Z = 4 0.28 × 0.18 × 0.18 mm

Data collection

Nonius KappaCCD diffractometer 4868 independent reflections
Radiation source: fine-focus sealed tube 4124 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 2.7°
CCD scans h = 0→11
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) k = −25→24
Tmin = 0.926, Tmax = 0.952 l = −15→15
9175 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.033P)2 + 1.1739P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.35 e Å3
4868 reflections Δρmin = −0.52 e Å3
273 parameters

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.82190 (5) 0.10092 (2) 0.64722 (4) 0.03234 (12)
S2 0.70194 (5) 0.41656 (2) 0.81742 (4) 0.03349 (12)
O1 0.77379 (11) 0.19649 (6) 1.07866 (8) 0.0215 (2)
O3 0.32504 (11) 0.16901 (6) 0.82274 (8) 0.0220 (2)
O2 0.89922 (11) 0.18316 (6) 0.93462 (9) 0.0259 (2)
O4 0.37916 (13) 0.26642 (6) 0.73636 (9) 0.0296 (3)
N1 0.65160 (13) 0.15011 (6) 0.79822 (10) 0.0194 (3)
N2 0.62380 (14) 0.28759 (7) 0.88116 (11) 0.0255 (3)
C1 0.78640 (15) 0.18306 (7) 0.97396 (12) 0.0183 (3)
C22 0.65775 (15) 0.03661 (7) 0.95391 (12) 0.0186 (3)
C2 0.63324 (15) 0.16521 (7) 0.91079 (11) 0.0161 (3)
C23 0.77233 (16) 0.01718 (8) 1.03430 (14) 0.0259 (3)
H4 0.799 0.0459 1.0965 0.031*
C3 0.53140 (15) 0.23112 (7) 0.90468 (12) 0.0179 (3)
C29 0.73140 (16) 0.12822 (7) 0.73867 (12) 0.0199 (3)
C34 0.29415 (19) 0.42686 (8) 0.98493 (14) 0.0297 (4)
H16 0.3257 0.4735 0.993 0.036*
C38 0.19183 (17) 0.15756 (10) 0.74522 (13) 0.0313 (4)
H21A 0.1091 0.1818 0.7708 0.047*
H21B 0.1704 0.1081 0.7401 0.047*
H21C 0.2065 0.1751 0.6726 0.047*
C31 0.46259 (15) 0.24680 (7) 1.01067 (11) 0.0184 (3)
H13A 0.4134 0.2048 1.0336 0.022*
H13B 0.5417 0.2594 1.0706 0.022*
C35 0.14653 (19) 0.41193 (9) 0.95249 (14) 0.0299 (4)
H17 0.0771 0.4482 0.9375 0.036*
C32 0.35185 (15) 0.30495 (7) 0.99304 (11) 0.0178 (3)
C4 0.40438 (16) 0.22487 (8) 0.80839 (11) 0.0199 (3)
C21 0.57050 (15) 0.10158 (7) 0.96548 (12) 0.0170 (3)
H2A 0.5699 0.1113 1.0446 0.02*
H2B 0.4673 0.0941 0.9317 0.02*
C36 0.10069 (17) 0.34392 (9) 0.94210 (12) 0.0252 (3)
H18 −0.0006 0.3336 0.9211 0.03*
C28 0.90829 (16) 0.21203 (9) 1.15173 (13) 0.0257 (3)
H10A 0.962 0.1692 1.1718 0.039*
H10B 0.8836 0.2345 1.2183 0.039*
H10C 0.97 0.2429 1.1144 0.039*
C27 0.62157 (19) −0.00584 (8) 0.86285 (14) 0.0267 (3)
H8 0.5444 0.0072 0.8069 0.032*
C33 0.39630 (17) 0.37363 (8) 1.00568 (12) 0.0227 (3)
H15 0.497 0.3842 1.0286 0.027*
C25 0.8090 (2) −0.08616 (9) 0.93408 (19) 0.0419 (5)
H6 0.8596 −0.1284 0.9281 0.05*
C39 0.65003 (16) 0.34293 (8) 0.85183 (12) 0.0202 (3)
C26 0.6972 (2) −0.06717 (9) 0.85291 (17) 0.0390 (4)
H7 0.6718 −0.0959 0.7905 0.047*
C37 0.20244 (16) 0.29063 (8) 0.96224 (12) 0.0208 (3)
H19 0.1701 0.2441 0.955 0.025*
C24 0.84797 (18) −0.04410 (9) 1.02404 (17) 0.0371 (4)
H5 0.9265 −0.057 1.079 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0265 (2) 0.0405 (3) 0.0326 (2) −0.00216 (17) 0.01345 (16) −0.01572 (18)
S2 0.0424 (2) 0.0188 (2) 0.0414 (2) −0.00374 (17) 0.01371 (19) 0.00715 (17)
O1 0.0172 (5) 0.0254 (6) 0.0216 (5) −0.0007 (4) 0.0019 (4) −0.0027 (4)
O3 0.0183 (5) 0.0277 (6) 0.0195 (5) 0.0007 (4) 0.0004 (4) 0.0027 (4)
O2 0.0178 (5) 0.0301 (6) 0.0311 (6) −0.0020 (4) 0.0084 (4) −0.0050 (5)
O4 0.0438 (7) 0.0274 (6) 0.0182 (5) 0.0100 (5) 0.0060 (5) 0.0058 (4)
N1 0.0202 (6) 0.0190 (6) 0.0200 (6) 0.0020 (5) 0.0058 (5) 0.0003 (5)
N2 0.0267 (7) 0.0176 (7) 0.0352 (7) 0.0015 (5) 0.0146 (6) 0.0034 (5)
C1 0.0192 (7) 0.0136 (6) 0.0227 (7) 0.0003 (5) 0.0048 (5) −0.0003 (5)
C22 0.0165 (6) 0.0144 (7) 0.0267 (7) 0.0000 (5) 0.0094 (5) 0.0032 (5)
C2 0.0170 (6) 0.0147 (6) 0.0175 (6) 0.0011 (5) 0.0058 (5) −0.0001 (5)
C23 0.0186 (7) 0.0245 (8) 0.0353 (9) 0.0010 (6) 0.0063 (6) 0.0100 (6)
C3 0.0184 (6) 0.0147 (6) 0.0219 (7) 0.0008 (5) 0.0076 (5) 0.0022 (5)
C29 0.0188 (7) 0.0183 (7) 0.0224 (7) −0.0028 (6) 0.0021 (6) −0.0016 (5)
C34 0.0368 (9) 0.0180 (7) 0.0361 (9) 0.0048 (7) 0.0119 (7) 0.0001 (6)
C38 0.0202 (7) 0.0512 (11) 0.0207 (7) 0.0038 (7) −0.0039 (6) 0.0031 (7)
C31 0.0192 (7) 0.0186 (7) 0.0183 (7) 0.0030 (5) 0.0058 (5) −0.0003 (5)
C35 0.0323 (8) 0.0281 (9) 0.0303 (8) 0.0149 (7) 0.0075 (7) 0.0046 (7)
C32 0.0205 (7) 0.0181 (7) 0.0156 (6) 0.0035 (5) 0.0053 (5) −0.0005 (5)
C4 0.0240 (7) 0.0207 (7) 0.0165 (7) 0.0075 (6) 0.0083 (5) 0.0011 (5)
C21 0.0151 (6) 0.0139 (6) 0.0227 (7) −0.0004 (5) 0.0052 (5) 0.0018 (5)
C36 0.0207 (7) 0.0344 (9) 0.0205 (7) 0.0076 (6) 0.0029 (6) −0.0003 (6)
C28 0.0173 (7) 0.0307 (9) 0.0279 (8) −0.0013 (6) −0.0017 (6) −0.0068 (6)
C27 0.0333 (8) 0.0177 (7) 0.0308 (8) −0.0034 (6) 0.0105 (7) −0.0008 (6)
C33 0.0237 (7) 0.0200 (7) 0.0254 (7) 0.0007 (6) 0.0071 (6) −0.0034 (6)
C25 0.0413 (10) 0.0184 (8) 0.0743 (14) 0.0109 (7) 0.0379 (10) 0.0125 (9)
C39 0.0210 (7) 0.0205 (7) 0.0195 (7) 0.0025 (6) 0.0048 (5) 0.0001 (6)
C26 0.0543 (12) 0.0188 (8) 0.0510 (11) −0.0039 (8) 0.0326 (10) −0.0049 (7)
C37 0.0214 (7) 0.0227 (7) 0.0187 (7) 0.0012 (6) 0.0050 (5) −0.0025 (5)
C24 0.0212 (8) 0.0314 (9) 0.0616 (12) 0.0088 (7) 0.0159 (8) 0.0240 (9)

Geometric parameters (Å, º)

S1—C29 1.5762 (15) C38—H21B 0.98
S2—C39 1.5813 (15) C38—H21C 0.98
O1—C1 1.3320 (17) C31—C32 1.5132 (19)
O1—C28 1.4531 (17) C31—H13A 0.99
O3—C4 1.3302 (18) C31—H13B 0.99
O3—C38 1.4583 (17) C35—C36 1.385 (2)
O2—C1 1.1998 (17) C35—H17 0.95
O4—C4 1.1955 (18) C32—C33 1.396 (2)
N1—C29 1.1818 (19) C32—C37 1.398 (2)
N1—C2 1.4449 (17) C21—H2A 0.99
N2—C39 1.168 (2) C21—H2B 0.99
N2—C3 1.4380 (19) C36—C37 1.392 (2)
C1—C2 1.5470 (19) C36—H18 0.95
C22—C23 1.391 (2) C28—H10A 0.98
C22—C27 1.391 (2) C28—H10B 0.98
C22—C21 1.5099 (19) C28—H10C 0.98
C2—C21 1.5528 (19) C27—C26 1.391 (2)
C2—C3 1.5788 (19) C27—H8 0.95
C23—C24 1.391 (2) C33—H15 0.95
C23—H4 0.95 C25—C26 1.378 (3)
C3—C4 1.546 (2) C25—C24 1.380 (3)
C3—C31 1.5520 (19) C25—H6 0.95
C34—C35 1.388 (2) C26—H7 0.95
C34—C33 1.394 (2) C37—H19 0.95
C34—H16 0.95 C24—H5 0.95
C38—H21A 0.98
C1—O1—C28 117.23 (11) C36—C35—H17 120.1
C4—O3—C38 117.49 (12) C34—C35—H17 120.1
C29—N1—C2 145.87 (13) C33—C32—C37 118.70 (13)
C39—N2—C3 156.08 (15) C33—C32—C31 121.06 (13)
O2—C1—O1 125.58 (13) C37—C32—C31 120.23 (13)
O2—C1—C2 124.86 (13) O4—C4—O3 126.41 (14)
O1—C1—C2 109.54 (11) O4—C4—C3 124.16 (14)
C23—C22—C27 118.89 (14) O3—C4—C3 109.32 (11)
C23—C22—C21 121.17 (14) C22—C21—C2 112.99 (11)
C27—C22—C21 119.92 (13) C22—C21—H2A 109
N1—C2—C1 107.94 (11) C2—C21—H2A 109
N1—C2—C21 110.55 (11) C22—C21—H2B 109
C1—C2—C21 109.01 (11) C2—C21—H2B 109
N1—C2—C3 105.34 (11) H2A—C21—H2B 107.8
C1—C2—C3 109.42 (11) C35—C36—C37 120.26 (15)
C21—C2—C3 114.38 (11) C35—C36—H18 119.9
C24—C23—C22 120.31 (17) C37—C36—H18 119.9
C24—C23—H4 119.8 O1—C28—H10A 109.5
C22—C23—H4 119.8 O1—C28—H10B 109.5
N2—C3—C4 107.98 (12) H10A—C28—H10B 109.5
N2—C3—C31 109.72 (12) O1—C28—H10C 109.5
C4—C3—C31 107.84 (11) H10A—C28—H10C 109.5
N2—C3—C2 105.42 (11) H10B—C28—H10C 109.5
C4—C3—C2 110.55 (11) C26—C27—C22 120.68 (17)
C31—C3—C2 115.12 (11) C26—C27—H8 119.7
N1—C29—S1 172.86 (14) C22—C27—H8 119.7
C35—C34—C33 120.13 (15) C34—C33—C32 120.57 (15)
C35—C34—H16 119.9 C34—C33—H15 119.7
C33—C34—H16 119.9 C32—C33—H15 119.7
O3—C38—H21A 109.5 C26—C25—C24 120.37 (16)
O3—C38—H21B 109.5 C26—C25—H6 119.8
H21A—C38—H21B 109.5 C24—C25—H6 119.8
O3—C38—H21C 109.5 N2—C39—S2 174.30 (14)
H21A—C38—H21C 109.5 C25—C26—C27 119.70 (18)
H21B—C38—H21C 109.5 C25—C26—H7 120.2
C32—C31—C3 111.59 (11) C27—C26—H7 120.1
C32—C31—H13A 109.3 C36—C37—C32 120.54 (14)
C3—C31—H13A 109.3 C36—C37—H19 119.7
C32—C31—H13B 109.3 C32—C37—H19 119.7
C3—C31—H13B 109.3 C25—C24—C23 120.04 (17)
H13A—C31—H13B 108 C25—C24—H5 120
C36—C35—C34 119.79 (14) C23—C24—H5 120
C28—O1—C1—O2 −0.6 (2) C3—C31—C32—C33 −85.99 (16)
C28—O1—C1—C2 177.90 (12) C3—C31—C32—C37 93.19 (15)
C29—N1—C2—C1 30.4 (3) C38—O3—C4—O4 −1.7 (2)
C29—N1—C2—C21 −88.8 (3) C38—O3—C4—C3 174.64 (12)
C29—N1—C2—C3 147.2 (2) N2—C3—C4—O4 −9.50 (19)
O2—C1—C2—N1 −0.79 (19) C31—C3—C4—O4 109.00 (16)
O1—C1—C2—N1 −179.25 (11) C2—C3—C4—O4 −124.35 (15)
O2—C1—C2—C21 119.32 (15) N2—C3—C4—O3 174.10 (11)
O1—C1—C2—C21 −59.14 (14) C31—C3—C4—O3 −67.40 (14)
O2—C1—C2—C3 −114.92 (15) C2—C3—C4—O3 59.25 (14)
O1—C1—C2—C3 66.61 (14) C23—C22—C21—C2 92.30 (16)
C27—C22—C23—C24 −0.7 (2) C27—C22—C21—C2 −89.27 (16)
C21—C22—C23—C24 177.70 (13) N1—C2—C21—C22 52.14 (15)
C39—N2—C3—C4 43.4 (4) C1—C2—C21—C22 −66.35 (15)
C39—N2—C3—C31 −73.9 (4) C3—C2—C21—C22 170.82 (11)
C39—N2—C3—C2 161.5 (3) C34—C35—C36—C37 −1.1 (2)
N1—C2—C3—N2 −73.95 (13) C23—C22—C27—C26 0.9 (2)
C1—C2—C3—N2 41.85 (14) C21—C22—C27—C26 −177.57 (14)
C21—C2—C3—N2 164.46 (12) C35—C34—C33—C32 0.7 (2)
N1—C2—C3—C4 42.50 (14) C37—C32—C33—C34 −1.8 (2)
C1—C2—C3—C4 158.31 (11) C31—C32—C33—C34 177.40 (14)
C21—C2—C3—C4 −79.09 (14) C3—N2—C39—S2 167.5 (12)
N1—C2—C3—C31 165.00 (12) C24—C25—C26—C27 −1.1 (3)
C1—C2—C3—C31 −79.20 (14) C22—C27—C26—C25 0.0 (2)
C21—C2—C3—C31 43.41 (16) C35—C36—C37—C32 −0.1 (2)
C2—N1—C29—S1 18E1 (10) C33—C32—C37—C36 1.5 (2)
N2—C3—C31—C32 68.64 (15) C31—C32—C37—C36 −177.71 (13)
C4—C3—C31—C32 −48.75 (15) C26—C25—C24—C23 1.3 (3)
C2—C3—C31—C32 −172.68 (12) C22—C23—C24—C25 −0.3 (2)
C33—C34—C35—C36 0.8 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C32–C37 ring.

D—H···A D—H H···A D···A D—H···A
C38—H21C···Cgi 0.98 2.61 3.461 (2) 145

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2516).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011a). Pure Appl. Chem. 83, 1619–1636.
  3. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011b). Pure Appl. Chem. 83, 1637–1641.
  4. Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.
  5. Cież, D. (2007). Tetrahedron, 63, 4510–4515.
  6. Cież, D., Kalinowska-Tłuścik, J., Peyrat, S., Pougoue Touko, E., Trzewik, B. & Zwoliński, K. (2008). Synthesis, 40, 3261–3266.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.
  10. Morel, G. & Marchand, E. (2001). Heteroat. Chem. 12, 617–624.
  11. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009294/fj2516sup1.cif

e-68-o1025-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009294/fj2516Isup2.hkl

e-68-o1025-Isup2.hkl (233.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009294/fj2516Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812009294/fj2516Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES