Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1029. doi: 10.1107/S1600536812008859

N-(4-Chloro­butano­yl)-N′-[2-(trifluoro­meth­yl)phen­yl]thio­urea

Mohd Sukeri Mohd Yusof a, Nur Farhana Embong a, Suhana Arshad b, Ibrahim Abdul Razak b,*,
PMCID: PMC3343992  PMID: 22589901

Abstract

In the title compound, C12H12ClF3N2OS, the dihedral angle between the benzene ring and the thio­urea fragment is 69.41 (5)°. The thio­urea N—H atoms adopt an anti conformation, such that one of them forms an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, both N—H groups form inversion dimers, one via a pair of N—H⋯S hydrogen bonds and one via a pair of N—H⋯O hydrogen bonds. These lead to R 2 2(8) and R 2 2(12) loops, respectively. Weak C—H⋯Cl, C—H⋯F, C—H⋯S and π–π [centroid–centroid separation = 3.7098 (6)Å and slippage = 1.853 Å] inter­actions also occur.

Related literature  

For a related structure and background to thio­urea derivatives, see: Yusof et al. (2011). For related structures, see: Khawar Rauf et al. (2006); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1029-scheme1.jpg

Experimental  

Crystal data  

  • C12H12ClF3N2OS

  • M r = 324.75

  • Triclinic, Inline graphic

  • a = 7.8622 (1) Å

  • b = 8.9073 (1) Å

  • c = 11.0341 (1) Å

  • α = 113.687 (1)°

  • β = 103.419 (1)°

  • γ = 95.653 (1)°

  • V = 672.18 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 K

  • 0.41 × 0.19 × 0.15 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.829, T max = 0.932

  • 18148 measured reflections

  • 4884 independent reflections

  • 4304 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.078

  • S = 0.97

  • 4884 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008859/hb6655sup1.cif

e-68-o1029-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008859/hb6655Isup2.hkl

e-68-o1029-Isup2.hkl (239.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008859/hb6655Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.855 (16) 1.971 (17) 2.6486 (12) 135.4 (16)
N1—H1N1⋯O1i 0.855 (16) 2.514 (17) 3.2273 (12) 141.6 (14)
N2—H1N2⋯S1ii 0.849 (17) 2.682 (17) 3.5079 (10) 164.7 (14)
C2—H2A⋯Cl1iii 0.95 2.82 3.5535 (11) 135
C3—H3A⋯F1iv 0.95 2.47 3.2617 (13) 140
C9—H9A⋯S1ii 0.99 2.84 3.7829 (10) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 and FRGS 59178 to conduct this work.

supplementary crystallographic information

Comment

As part of our ongoing studies of thiourea derivatives we now describe the title compound. It is analogous to the previously reported N-(4-chlorobutanoyl)-N'- (2-fluorophenyl)thiourea (Yusof et al., 2011) except the fluoro atom is replaced by trifluoromethyl atom.

In the molecular structure (Fig. 1), the benzene ring (C1–C6) is essentially planar with maximum deviation of 0.011 (1) Å at atom C5. The intramolecular N1—H1N1···O1 hydrogen bond (Table 1) generates S(6) ring motifs (Berstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to the related structures (Khawar Rauf et al., 2006; Yusof et al., 2007).

The crystal packing is shown in Fig. 2. R12(6), R22(8), R22(12) ring motifs (Berstein et al. 1995) are formed by intermolecular N2—H1N2···S1, N1—H1N1···O1 and C9—H9A···S1 (Table 1) hydrogen bonds, respectively. Intermolecular C2—H2A···Cl1 and C3—H3A···F1 (Table 1) interactions linked the molecules into three-dimensional network. π–π interaction [Cg1···Cg1 (-1 - x, 1 - y, 1 - z) = 3.7098 (6) Å;] are also observed [Cg1: C1–C6].

Experimental

An equimolar amount of 2-(trifluoromethyl)aniline (1.14 g, 7.09 mmol) in 20 ml acetone was added drop-wise into a stirring acetone solution (75 ml) containing 4-chlorobutanoylchloride (1.00 g, 7.09 mmol) and ammonium thiocyanate (0.54 g, 7.09 mmol). The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature to yield colourless needles.

Refinement

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.856 (17) and 0.849 (15) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C12H12ClF3N2OS Z = 2
Mr = 324.75 F(000) = 332
Triclinic, P1 Dx = 1.605 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8622 (1) Å Cell parameters from 9937 reflections
b = 8.9073 (1) Å θ = 2.5–32.6°
c = 11.0341 (1) Å µ = 0.47 mm1
α = 113.687 (1)° T = 100 K
β = 103.419 (1)° Needle, colourless
γ = 95.653 (1)° 0.41 × 0.19 × 0.15 mm
V = 672.18 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 4884 independent reflections
Radiation source: fine-focus sealed tube 4304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
φ and ω scans θmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.829, Tmax = 0.932 k = −13→12
18148 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.3295P] where P = (Fo2 + 2Fc2)/3
4884 reflections (Δ/σ)max < 0.001
189 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.66943 (3) 0.08190 (3) 0.87826 (3) 0.01972 (6)
S1 0.77778 (4) 0.12238 (3) 0.48626 (3) 0.01851 (6)
F1 0.97525 (9) 0.59829 (9) 0.65758 (8) 0.02506 (15)
F2 0.86578 (9) 0.81937 (8) 0.70633 (8) 0.02360 (14)
F3 0.97036 (10) 0.74396 (10) 0.86623 (7) 0.02883 (16)
O1 1.11812 (11) 0.39045 (10) 0.93786 (8) 0.02277 (17)
N1 0.83210 (12) 0.36357 (10) 0.74177 (9) 0.01434 (15)
N2 1.02233 (11) 0.17737 (10) 0.71774 (9) 0.01377 (15)
C1 0.69392 (13) 0.58116 (12) 0.69974 (9) 0.01248 (16)
C2 0.54109 (13) 0.64135 (12) 0.66718 (10) 0.01409 (16)
H2A 0.5523 0.7491 0.6683 0.017*
C3 0.37240 (13) 0.54429 (13) 0.63303 (10) 0.01548 (17)
H3A 0.2685 0.5864 0.6123 0.019*
C4 0.35583 (14) 0.38496 (13) 0.62916 (10) 0.01655 (18)
H4A 0.2404 0.3175 0.6038 0.020*
C5 0.50789 (14) 0.32467 (12) 0.66239 (10) 0.01537 (17)
H5A 0.4962 0.2162 0.6598 0.018*
C6 0.67708 (13) 0.42288 (12) 0.69935 (9) 0.01262 (16)
C7 0.87834 (13) 0.22901 (12) 0.65719 (10) 0.01306 (16)
C8 1.13277 (14) 0.25600 (12) 0.85287 (10) 0.01538 (17)
C9 1.27517 (14) 0.16553 (12) 0.88836 (10) 0.01620 (17)
H9A 1.2920 0.0827 0.8021 0.019*
H9B 1.2370 0.1043 0.9385 0.019*
C10 1.45172 (14) 0.29236 (12) 0.97903 (10) 0.01529 (17)
H10A 1.4875 0.3522 0.9272 0.018*
H10B 1.4310 0.3765 1.0628 0.018*
C11 1.60482 (14) 0.21825 (13) 1.02413 (10) 0.01720 (18)
H11A 1.5689 0.1538 1.0726 0.021*
H11B 1.7087 0.3100 1.0902 0.021*
C12 0.87515 (13) 0.68537 (12) 0.73243 (11) 0.01615 (17)
H1N2 1.050 (2) 0.0918 (19) 0.6625 (16) 0.021 (4)*
H1N1 0.895 (2) 0.413 (2) 0.8270 (17) 0.026 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01900 (12) 0.01807 (11) 0.01890 (11) 0.00744 (9) 0.00681 (9) 0.00360 (9)
S1 0.01973 (12) 0.01899 (12) 0.01193 (11) 0.00983 (9) 0.00168 (9) 0.00240 (9)
F1 0.0166 (3) 0.0231 (3) 0.0371 (4) 0.0074 (3) 0.0159 (3) 0.0098 (3)
F2 0.0204 (3) 0.0169 (3) 0.0348 (4) 0.0028 (2) 0.0088 (3) 0.0125 (3)
F3 0.0184 (3) 0.0350 (4) 0.0206 (3) −0.0043 (3) −0.0044 (3) 0.0078 (3)
O1 0.0251 (4) 0.0206 (4) 0.0152 (3) 0.0129 (3) 0.0010 (3) 0.0015 (3)
N1 0.0152 (4) 0.0144 (3) 0.0114 (3) 0.0069 (3) 0.0024 (3) 0.0038 (3)
N2 0.0141 (4) 0.0126 (3) 0.0131 (3) 0.0064 (3) 0.0030 (3) 0.0039 (3)
C1 0.0115 (4) 0.0135 (4) 0.0110 (4) 0.0036 (3) 0.0033 (3) 0.0038 (3)
C2 0.0140 (4) 0.0149 (4) 0.0128 (4) 0.0056 (3) 0.0042 (3) 0.0048 (3)
C3 0.0117 (4) 0.0216 (4) 0.0130 (4) 0.0064 (3) 0.0040 (3) 0.0066 (3)
C4 0.0130 (4) 0.0209 (4) 0.0150 (4) 0.0023 (3) 0.0051 (3) 0.0070 (3)
C5 0.0157 (4) 0.0157 (4) 0.0147 (4) 0.0034 (3) 0.0051 (3) 0.0064 (3)
C6 0.0126 (4) 0.0138 (4) 0.0105 (4) 0.0053 (3) 0.0033 (3) 0.0039 (3)
C7 0.0138 (4) 0.0128 (4) 0.0129 (4) 0.0048 (3) 0.0043 (3) 0.0053 (3)
C8 0.0155 (4) 0.0154 (4) 0.0138 (4) 0.0060 (3) 0.0030 (3) 0.0052 (3)
C9 0.0157 (4) 0.0146 (4) 0.0155 (4) 0.0065 (3) 0.0011 (3) 0.0049 (3)
C10 0.0171 (4) 0.0127 (4) 0.0138 (4) 0.0051 (3) 0.0037 (3) 0.0037 (3)
C11 0.0163 (4) 0.0174 (4) 0.0140 (4) 0.0061 (3) 0.0033 (3) 0.0031 (3)
C12 0.0127 (4) 0.0155 (4) 0.0175 (4) 0.0032 (3) 0.0037 (3) 0.0051 (3)

Geometric parameters (Å, º)

Cl1—C11 1.8038 (10) C2—H2A 0.9500
S1—C7 1.6748 (10) C3—C4 1.3947 (14)
F1—C12 1.3455 (12) C3—H3A 0.9500
F2—C12 1.3404 (12) C4—C5 1.3904 (14)
F3—C12 1.3430 (12) C4—H4A 0.9500
O1—C8 1.2255 (12) C5—C6 1.3905 (14)
N1—C7 1.3358 (12) C5—H5A 0.9500
N1—C6 1.4298 (12) C8—C9 1.5112 (14)
N1—H1N1 0.856 (17) C9—C10 1.5305 (14)
N2—C8 1.3813 (13) C9—H9A 0.9900
N2—C7 1.3921 (12) C9—H9B 0.9900
N2—H1N2 0.849 (15) C10—C11 1.5082 (14)
C1—C2 1.3935 (13) C10—H10A 0.9900
C1—C6 1.4011 (13) C10—H10B 0.9900
C1—C12 1.5013 (14) C11—H11A 0.9900
C2—C3 1.3888 (14) C11—H11B 0.9900
C7—N1—C6 123.49 (8) O1—C8—N2 122.61 (9)
C7—N1—H1N1 118.1 (11) O1—C8—C9 122.16 (9)
C6—N1—H1N1 118.3 (11) N2—C8—C9 115.22 (8)
C8—N2—C7 127.83 (8) C8—C9—C10 109.74 (8)
C8—N2—H1N2 116.8 (10) C8—C9—H9A 109.7
C7—N2—H1N2 115.1 (10) C10—C9—H9A 109.7
C2—C1—C6 119.79 (9) C8—C9—H9B 109.7
C2—C1—C12 119.61 (9) C10—C9—H9B 109.7
C6—C1—C12 120.59 (8) H9A—C9—H9B 108.2
C3—C2—C1 120.22 (9) C11—C10—C9 115.10 (8)
C3—C2—H2A 119.9 C11—C10—H10A 108.5
C1—C2—H2A 119.9 C9—C10—H10A 108.5
C2—C3—C4 119.88 (9) C11—C10—H10B 108.5
C2—C3—H3A 120.1 C9—C10—H10B 108.5
C4—C3—H3A 120.1 H10A—C10—H10B 107.5
C5—C4—C3 120.14 (9) C10—C11—Cl1 111.48 (7)
C5—C4—H4A 119.9 C10—C11—H11A 109.3
C3—C4—H4A 119.9 Cl1—C11—H11A 109.3
C4—C5—C6 120.12 (9) C10—C11—H11B 109.3
C4—C5—H5A 119.9 Cl1—C11—H11B 109.3
C6—C5—H5A 119.9 H11A—C11—H11B 108.0
C5—C6—C1 119.81 (9) F2—C12—F3 106.59 (8)
C5—C6—N1 119.42 (8) F2—C12—F1 106.08 (8)
C1—C6—N1 120.72 (9) F3—C12—F1 106.43 (8)
N1—C7—N2 116.42 (8) F2—C12—C1 112.63 (8)
N1—C7—S1 124.76 (7) F3—C12—C1 112.29 (8)
N2—C7—S1 118.81 (7) F1—C12—C1 112.35 (8)
C6—C1—C2—C3 −0.66 (14) C8—N2—C7—N1 −5.61 (15)
C12—C1—C2—C3 178.23 (9) C8—N2—C7—S1 173.63 (8)
C1—C2—C3—C4 −1.03 (14) C7—N2—C8—O1 −2.41 (17)
C2—C3—C4—C5 1.43 (14) C7—N2—C8—C9 178.37 (9)
C3—C4—C5—C6 −0.13 (15) O1—C8—C9—C10 −40.56 (14)
C4—C5—C6—C1 −1.56 (14) N2—C8—C9—C10 138.66 (9)
C4—C5—C6—N1 176.03 (9) C8—C9—C10—C11 178.93 (8)
C2—C1—C6—C5 1.95 (14) C9—C10—C11—Cl1 65.16 (10)
C12—C1—C6—C5 −176.93 (9) C2—C1—C12—F2 −9.09 (13)
C2—C1—C6—N1 −175.61 (8) C6—C1—C12—F2 169.80 (8)
C12—C1—C6—N1 5.52 (13) C2—C1—C12—F3 111.26 (10)
C7—N1—C6—C5 66.17 (13) C6—C1—C12—F3 −69.86 (12)
C7—N1—C6—C1 −116.27 (11) C2—C1—C12—F1 −128.80 (9)
C6—N1—C7—N2 −173.57 (9) C6—C1—C12—F1 50.08 (12)
C6—N1—C7—S1 7.24 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1 0.855 (16) 1.971 (17) 2.6486 (12) 135.4 (16)
N1—H1N1···O1i 0.855 (16) 2.514 (17) 3.2273 (12) 141.6 (14)
N2—H1N2···S1ii 0.849 (17) 2.682 (17) 3.5079 (10) 164.7 (14)
C2—H2A···Cl1iii 0.95 2.82 3.5535 (11) 135
C3—H3A···F1iv 0.95 2.47 3.2617 (13) 140
C9—H9A···S1ii 0.99 2.84 3.7829 (10) 159

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+1; (iii) x−1, y+1, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6655).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299–o4301.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849. [DOI] [PMC free article] [PubMed]
  8. Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241–o243.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008859/hb6655sup1.cif

e-68-o1029-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008859/hb6655Isup2.hkl

e-68-o1029-Isup2.hkl (239.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008859/hb6655Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES