Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):o1035. doi: 10.1107/S1600536812009968

(E)-3-[(3-Eth­oxy-2-hy­droxy­benzyl­idene)amino]­benzoic acid

Hadi Kargar a,*, Zahra Sharafi b, Reza Kia c, Muhammad Nawaz Tahir d,*
PMCID: PMC3343997  PMID: 22589906

Abstract

In the title compound, C16H15NO4, a potential bidentate N,O-donor Schiff base ligand, the benzene rings are inclined to one another by 4.24 (12)°. The mol­ecule has an E conformation about the C=N bond. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers with R 2 2(8) ring motifs. These dimers are further connected by C—H⋯O inter­actions, forming a sheet in (104). There is also a C—H⋯π inter­action present involving neighbouring mol­ecules.

Related literature  

For background to Schiff bases ligands and their metal complexes, see: Kargar et al. (2011, 2012); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1035-scheme1.jpg

Experimental  

Crystal data  

  • C16H15NO4

  • M r = 285.29

  • Triclinic, Inline graphic

  • a = 5.0306 (3) Å

  • b = 7.1847 (4) Å

  • c = 19.6856 (13) Å

  • α = 94.956 (4)°

  • β = 93.310 (4)°

  • γ = 102.299 (4)°

  • V = 690.45 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.12 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.979, T max = 0.992

  • 11954 measured reflections

  • 3331 independent reflections

  • 1429 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.150

  • S = 0.95

  • 3331 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009968/su2387sup1.cif

e-68-o1035-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009968/su2387Isup2.hkl

e-68-o1035-Isup2.hkl (163.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009968/su2387Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.99 1.75 2.570 (3) 138
O1—H1A⋯O2i 0.99 1.63 2.610 (2) 174
C3—H3B⋯O1ii 0.93 2.58 3.453 (3) 157
C4—H4A⋯O2iii 0.93 2.53 3.341 (3) 146
C15—H15ACg2iv 0.97 2.75 3.610 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

supplementary crystallographic information

Comment

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we synthesized and determined the crystal structure of the new title potential bidentate N,O-donor Schiff base.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O3—H3A···N1 hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the benzene rings is 4.24 (12)°. The molecule has an E conformation about the C8═N1 bond.

In the crystal, pairs of O—H···O hydrogen bonds (Table 1) link molecules to form inversion dimers with an R22(8) ring motif. These dimers are connected further by C—H···O interactions along the b axis direction, forming a sheet (Fig. 2). There is also a C-H···π interaction present involving neighbouring molecules (Table 1).

Experimental

The title compound was synthesized by adding 3-ethoxysalicylaldehyde (2 mmol) to a solution of 3-carboxyaniline (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Pale yellow single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol, by slow evaporation of the solvents at room temperature over several days.

Refinement

The O-bound hydrogen atoms were located in a difference Fourier map and constrained to ride on the parent atoms with Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms. A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed line shows the intramolecular O-H···N hydrogen bond - see Table 1 for details.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c-axis, showing the inversion dimers, with an R22(8) ring motif, which are further connected through C—H···O interactions along the b-axis direction - see Table 1 for details.

Crystal data

C16H15NO4 Z = 2
Mr = 285.29 F(000) = 300
Triclinic, P1 Dx = 1.372 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0306 (3) Å Cell parameters from 2760 reflections
b = 7.1847 (4) Å θ = 2.6–27.7°
c = 19.6856 (13) Å µ = 0.10 mm1
α = 94.956 (4)° T = 296 K
β = 93.310 (4)° Block, pale-yellow
γ = 102.299 (4)° 0.22 × 0.12 × 0.08 mm
V = 690.45 (7) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3331 independent reflections
Radiation source: fine-focus sealed tube 1429 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
φ and ω scans θmax = 28.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −6→6
Tmin = 0.979, Tmax = 0.992 k = −9→9
11954 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0577P)2] where P = (Fo2 + 2Fc2)/3
3331 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.7756 (4) 0.3599 (4) 0.95116 (13) 0.0401 (6)
C2 −0.6137 (4) 0.2435 (3) 0.91234 (12) 0.0381 (6)
C3 −0.6380 (5) 0.0522 (3) 0.92180 (13) 0.0491 (7)
H3B −0.7556 −0.0044 0.9526 0.059*
C4 −0.4873 (5) −0.0532 (4) 0.88541 (14) 0.0581 (8)
H4A −0.5024 −0.1818 0.8916 0.070*
C5 −0.3131 (5) 0.0305 (4) 0.83961 (13) 0.0514 (7)
H5A −0.2132 −0.0429 0.8149 0.062*
C6 −0.2848 (5) 0.2212 (4) 0.82988 (12) 0.0394 (6)
C7 −0.4376 (5) 0.3274 (3) 0.86627 (12) 0.0419 (6)
H7A −0.4226 0.4559 0.8599 0.050*
C8 −0.0261 (5) 0.4639 (4) 0.77162 (12) 0.0450 (7)
H8A −0.1074 0.5525 0.7949 0.054*
C9 0.1761 (4) 0.5293 (3) 0.72375 (12) 0.0404 (6)
C10 0.3028 (5) 0.3975 (3) 0.68892 (13) 0.0418 (6)
C11 0.4947 (5) 0.4626 (4) 0.64210 (13) 0.0461 (7)
C12 0.5568 (5) 0.6515 (4) 0.63127 (13) 0.0515 (7)
H12A 0.6851 0.6933 0.6006 0.062*
C13 0.4304 (5) 0.7824 (4) 0.66551 (14) 0.0559 (8)
H13A 0.4725 0.9106 0.6574 0.067*
C14 0.2425 (5) 0.7208 (4) 0.71145 (13) 0.0516 (7)
H14A 0.1590 0.8084 0.7346 0.062*
C15 0.7861 (5) 0.3715 (4) 0.55931 (14) 0.0554 (8)
H15A 0.9426 0.4700 0.5781 0.067*
H15B 0.6947 0.4196 0.5221 0.067*
C16 0.8758 (6) 0.1926 (4) 0.53405 (16) 0.0740 (9)
H16A 1.0043 0.2217 0.5002 0.111*
H16B 0.7201 0.0979 0.5142 0.111*
H16C 0.9603 0.1441 0.5717 0.111*
N1 −0.0939 (4) 0.2889 (3) 0.78237 (10) 0.0452 (6)
O1 −0.9217 (3) 0.2754 (2) 0.99589 (9) 0.0551 (5)
H1A −1.0308 0.3568 1.0191 0.083*
O2 −0.7718 (3) 0.5279 (2) 0.93998 (9) 0.0527 (5)
O3 0.2460 (3) 0.2104 (2) 0.69762 (9) 0.0583 (5)
H3A 0.0815 0.1769 0.7229 0.087*
O4 0.6037 (4) 0.3213 (2) 0.61093 (9) 0.0613 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0324 (14) 0.0490 (16) 0.0379 (16) 0.0025 (11) 0.0121 (11) 0.0089 (12)
C2 0.0340 (14) 0.0450 (16) 0.0359 (16) 0.0074 (11) 0.0103 (11) 0.0064 (12)
C3 0.0483 (16) 0.0466 (17) 0.0541 (19) 0.0064 (12) 0.0205 (13) 0.0137 (14)
C4 0.0690 (19) 0.0396 (16) 0.071 (2) 0.0141 (14) 0.0290 (16) 0.0115 (14)
C5 0.0498 (16) 0.0517 (18) 0.056 (2) 0.0152 (13) 0.0189 (13) 0.0039 (14)
C6 0.0334 (13) 0.0479 (16) 0.0394 (16) 0.0106 (11) 0.0117 (11) 0.0085 (12)
C7 0.0420 (14) 0.0428 (15) 0.0440 (17) 0.0104 (11) 0.0149 (12) 0.0104 (12)
C8 0.0422 (15) 0.0557 (18) 0.0397 (17) 0.0146 (12) 0.0152 (12) 0.0024 (13)
C9 0.0340 (14) 0.0496 (16) 0.0395 (17) 0.0100 (11) 0.0123 (11) 0.0058 (12)
C10 0.0374 (14) 0.0463 (17) 0.0442 (17) 0.0102 (12) 0.0107 (11) 0.0119 (13)
C11 0.0409 (15) 0.0562 (18) 0.0459 (18) 0.0161 (12) 0.0183 (12) 0.0077 (13)
C12 0.0415 (16) 0.0612 (19) 0.0542 (19) 0.0099 (13) 0.0232 (13) 0.0103 (14)
C13 0.0570 (18) 0.0477 (17) 0.064 (2) 0.0069 (13) 0.0199 (15) 0.0106 (15)
C14 0.0528 (17) 0.0498 (18) 0.054 (2) 0.0133 (13) 0.0196 (14) 0.0005 (14)
C15 0.0464 (16) 0.080 (2) 0.0456 (18) 0.0209 (14) 0.0204 (13) 0.0118 (15)
C16 0.068 (2) 0.084 (2) 0.073 (2) 0.0216 (17) 0.0306 (17) −0.0062 (17)
N1 0.0406 (12) 0.0528 (15) 0.0460 (15) 0.0125 (10) 0.0169 (10) 0.0111 (11)
O1 0.0545 (11) 0.0557 (12) 0.0635 (13) 0.0175 (8) 0.0359 (9) 0.0186 (9)
O2 0.0548 (11) 0.0448 (11) 0.0638 (13) 0.0126 (8) 0.0298 (9) 0.0149 (9)
O3 0.0578 (12) 0.0537 (12) 0.0724 (15) 0.0200 (9) 0.0338 (10) 0.0179 (10)
O4 0.0587 (12) 0.0651 (12) 0.0676 (14) 0.0196 (9) 0.0376 (10) 0.0117 (10)

Geometric parameters (Å, º)

C1—O2 1.242 (3) C10—O3 1.342 (2)
C1—O1 1.289 (3) C10—C11 1.409 (3)
C1—C2 1.482 (3) C11—C12 1.365 (3)
C2—C3 1.384 (3) C11—O4 1.370 (3)
C2—C7 1.389 (3) C12—C13 1.392 (3)
C3—C4 1.369 (3) C12—H12A 0.9300
C3—H3B 0.9300 C13—C14 1.377 (3)
C4—C5 1.379 (3) C13—H13A 0.9300
C4—H4A 0.9300 C14—H14A 0.9300
C5—C6 1.378 (3) C15—O4 1.426 (3)
C5—H5A 0.9300 C15—C16 1.505 (3)
C6—C7 1.380 (3) C15—H15A 0.9700
C6—N1 1.420 (3) C15—H15B 0.9700
C7—H7A 0.9300 C16—H16A 0.9600
C8—N1 1.270 (3) C16—H16B 0.9600
C8—C9 1.458 (3) C16—H16C 0.9600
C8—H8A 0.9300 O1—H1A 0.9862
C9—C14 1.391 (3) O3—H3A 0.9867
C9—C10 1.403 (3)
O2—C1—O1 122.6 (2) C9—C10—C11 119.0 (2)
O2—C1—C2 121.30 (19) C12—C11—O4 125.9 (2)
O1—C1—C2 116.1 (2) C12—C11—C10 120.2 (2)
C3—C2—C7 120.1 (2) O4—C11—C10 113.9 (2)
C3—C2—C1 120.2 (2) C11—C12—C13 120.8 (2)
C7—C2—C1 119.7 (2) C11—C12—H12A 119.6
C4—C3—C2 119.4 (2) C13—C12—H12A 119.6
C4—C3—H3B 120.3 C14—C13—C12 119.6 (2)
C2—C3—H3B 120.3 C14—C13—H13A 120.2
C3—C4—C5 120.3 (2) C12—C13—H13A 120.2
C3—C4—H4A 119.9 C13—C14—C9 120.9 (2)
C5—C4—H4A 119.9 C13—C14—H14A 119.6
C6—C5—C4 121.1 (2) C9—C14—H14A 119.6
C6—C5—H5A 119.4 O4—C15—C16 107.0 (2)
C4—C5—H5A 119.4 O4—C15—H15A 110.3
C5—C6—C7 118.7 (2) C16—C15—H15A 110.3
C5—C6—N1 114.9 (2) O4—C15—H15B 110.3
C7—C6—N1 126.4 (2) C16—C15—H15B 110.3
C6—C7—C2 120.4 (2) H15A—C15—H15B 108.6
C6—C7—H7A 119.8 C15—C16—H16A 109.5
C2—C7—H7A 119.8 C15—C16—H16B 109.5
N1—C8—C9 121.7 (2) H16A—C16—H16B 109.5
N1—C8—H8A 119.2 C15—C16—H16C 109.5
C9—C8—H8A 119.2 H16A—C16—H16C 109.5
C14—C9—C10 119.5 (2) H16B—C16—H16C 109.5
C14—C9—C8 120.8 (2) C8—N1—C6 123.1 (2)
C10—C9—C8 119.8 (2) C1—O1—H1A 113.1
O3—C10—C9 122.6 (2) C10—O3—H3A 110.9
O3—C10—C11 118.3 (2) C11—O4—C15 117.80 (19)
O2—C1—C2—C3 −174.8 (2) C14—C9—C10—C11 −0.1 (4)
O1—C1—C2—C3 4.2 (3) C8—C9—C10—C11 179.1 (2)
O2—C1—C2—C7 5.1 (4) O3—C10—C11—C12 179.4 (2)
O1—C1—C2—C7 −175.9 (2) C9—C10—C11—C12 0.3 (4)
C7—C2—C3—C4 0.0 (4) O3—C10—C11—O4 −0.6 (3)
C1—C2—C3—C4 179.9 (2) C9—C10—C11—O4 −179.7 (2)
C2—C3—C4—C5 −0.1 (4) O4—C11—C12—C13 179.3 (3)
C3—C4—C5—C6 0.6 (4) C10—C11—C12—C13 −0.7 (4)
C4—C5—C6—C7 −0.9 (4) C11—C12—C13—C14 0.7 (4)
C4—C5—C6—N1 178.6 (2) C12—C13—C14—C9 −0.4 (4)
C5—C6—C7—C2 0.8 (4) C10—C9—C14—C13 0.1 (4)
N1—C6—C7—C2 −178.7 (2) C8—C9—C14—C13 −179.0 (2)
C3—C2—C7—C6 −0.3 (4) C9—C8—N1—C6 178.4 (2)
C1—C2—C7—C6 179.8 (2) C5—C6—N1—C8 −173.9 (2)
N1—C8—C9—C14 178.4 (2) C7—C6—N1—C8 5.6 (4)
N1—C8—C9—C10 −0.7 (4) C12—C11—O4—C15 −4.1 (4)
C14—C9—C10—O3 −179.1 (2) C10—C11—O4—C15 175.9 (2)
C8—C9—C10—O3 0.0 (4) C16—C15—O4—C11 179.8 (2)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1 0.99 1.75 2.570 (3) 138
O1—H1A···O2i 0.99 1.63 2.610 (2) 174
C3—H3B···O1ii 0.93 2.58 3.453 (3) 157
C4—H4A···O2iii 0.93 2.53 3.341 (3) 146
C15—H15A···Cg2iv 0.97 2.75 3.610 (3) 148

Symmetry codes: (i) −x−2, −y+1, −z+2; (ii) −x−2, −y, −z+2; (iii) x, y−1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2387).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68 m182. [DOI] [PMC free article] [PubMed]
  5. Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614. [DOI] [PMC free article] [PubMed]
  6. Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009968/su2387sup1.cif

e-68-o1035-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009968/su2387Isup2.hkl

e-68-o1035-Isup2.hkl (163.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009968/su2387Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES