Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1043. doi: 10.1107/S1600536812009889

3-Chloro-4-methyl­quinolin-2(1H)-one

Mohamed G Kassem a, Hazem A Ghabbour a, Hatem A Abdel-Aziz a, Hoong-Kun Fun b,*,, Chin Wei Ooi b
PMCID: PMC3344004  PMID: 22589913

Abstract

The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur.

Related literature  

For the biological activity of quinoline, see: Michael et al. (1996). For the synthesis, see: Hodgkinson & Staskun (1969). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Vasuki et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1043-scheme1.jpg

Experimental  

Crystal data  

  • C10H8ClNO

  • M r = 193.62

  • Monoclinic, Inline graphic

  • a = 3.9361 (2) Å

  • b = 12.9239 (6) Å

  • c = 17.1019 (7) Å

  • β = 100.197 (4)°

  • V = 856.23 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.56 mm−1

  • T = 296 K

  • 0.92 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.138, T max = 0.720

  • 5522 measured reflections

  • 1434 independent reflections

  • 1178 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.00

  • 1434 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009889/hb6671sup1.cif

e-68-o1043-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009889/hb6671Isup2.hkl

e-68-o1043-Isup2.hkl (70.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009889/hb6671Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.93 1.91 2.816 (2) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

supplementary crystallographic information

Comment

For the previous reports of the chemistry and the biological activity of quinolines, see Michael et al. (1996).

In the title compound (Fig. 1), the quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.012 (2) Å at atom C1. The bond lengths (Allen et al., 1987) and angles are within normal ranges are comparable to the related structure (Vasuki et al., 2001).

In the crystal structure (Fig. 2), the adjacent molecules are linked via pair of N1—H1···O1 (Table 1) hydrogen bonds, forming dimers with an R22 (8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by weak π—π interactions between the benzene ring (Cg1; C4–C9) and quinoline ring (Cg2; N1/C1–C9). [Cg1···Cg2 = 3.7622 (12) Å; 1+x, y, z].

Experimental

This compound was prepared according to the reported method (Hodgkinson & Staskun, 1969). Colorless needles of the title compound were grown from a mixed solution of EtOH/DMF (V/V = 2/1) by slow evaporation at room temperature.

Refinement

Atom H1 was located from the difference map and was fixed at their found positions with Uiso(H) = 1.2 Ueq(N) [N–H = 0.9256 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93 and 0.96 Å). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C10H8ClNO F(000) = 400
Mr = 193.62 Dx = 1.502 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 615 reflections
a = 3.9361 (2) Å θ = 4.3–63.6°
b = 12.9239 (6) Å µ = 3.56 mm1
c = 17.1019 (7) Å T = 296 K
β = 100.197 (4)° Needle, colourless
V = 856.23 (7) Å3 0.92 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1434 independent reflections
Radiation source: fine-focus sealed tube 1178 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
φ and ω scans θmax = 64.9°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −4→3
Tmin = 0.138, Tmax = 0.720 k = −15→14
5522 measured reflections l = −20→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0755P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
1434 reflections Δρmax = 0.18 e Å3
120 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0031 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.04066 (14) 0.51266 (4) 0.76645 (3) 0.0516 (2)
O1 1.0673 (4) 0.46152 (12) 0.60239 (9) 0.0560 (4)
N1 0.7804 (4) 0.60196 (13) 0.54512 (9) 0.0422 (4)
H1 0.7928 0.5780 0.4947 0.051*
C1 0.9152 (5) 0.54435 (15) 0.60939 (12) 0.0414 (4)
C2 0.8689 (5) 0.58782 (15) 0.68546 (11) 0.0386 (4)
C3 0.7149 (4) 0.68001 (14) 0.69302 (11) 0.0371 (4)
C4 0.5836 (5) 0.73765 (14) 0.62192 (11) 0.0368 (4)
C5 0.4234 (5) 0.83478 (16) 0.62245 (12) 0.0446 (5)
H5A 0.3935 0.8637 0.6706 0.054*
C6 0.3104 (6) 0.88763 (17) 0.55307 (14) 0.0529 (6)
H6A 0.2094 0.9525 0.5546 0.064*
C7 0.3468 (6) 0.84441 (18) 0.48054 (14) 0.0552 (6)
H7A 0.2690 0.8804 0.4337 0.066*
C8 0.4965 (5) 0.74913 (17) 0.47760 (12) 0.0477 (5)
H8A 0.5166 0.7198 0.4290 0.057*
C9 0.6184 (5) 0.69643 (15) 0.54803 (11) 0.0385 (4)
C10 0.6782 (6) 0.72335 (16) 0.77284 (11) 0.0468 (5)
H10A 0.7537 0.6728 0.8133 0.070*
H10B 0.4407 0.7403 0.7728 0.070*
H10C 0.8168 0.7846 0.7833 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0660 (4) 0.0475 (3) 0.0416 (3) 0.0056 (2) 0.0105 (2) 0.0074 (2)
O1 0.0806 (11) 0.0439 (9) 0.0462 (9) 0.0171 (8) 0.0183 (7) −0.0027 (7)
N1 0.0548 (10) 0.0398 (9) 0.0339 (9) 0.0011 (7) 0.0134 (7) −0.0035 (7)
C1 0.0486 (11) 0.0363 (10) 0.0412 (10) −0.0011 (8) 0.0129 (8) −0.0036 (8)
C2 0.0443 (10) 0.0376 (10) 0.0351 (10) −0.0038 (7) 0.0104 (7) 0.0000 (8)
C3 0.0386 (10) 0.0392 (10) 0.0349 (10) −0.0065 (7) 0.0105 (7) −0.0042 (8)
C4 0.0369 (10) 0.0363 (10) 0.0382 (10) −0.0046 (7) 0.0090 (7) −0.0041 (8)
C5 0.0451 (11) 0.0415 (11) 0.0474 (12) −0.0002 (8) 0.0086 (8) −0.0062 (9)
C6 0.0528 (12) 0.0430 (11) 0.0610 (14) 0.0065 (9) 0.0046 (10) 0.0014 (10)
C7 0.0574 (13) 0.0547 (14) 0.0506 (13) 0.0009 (10) 0.0014 (10) 0.0121 (10)
C8 0.0559 (12) 0.0498 (12) 0.0374 (11) −0.0005 (9) 0.0084 (8) 0.0017 (9)
C9 0.0395 (10) 0.0389 (10) 0.0380 (10) −0.0045 (7) 0.0096 (7) −0.0026 (8)
C10 0.0551 (12) 0.0491 (12) 0.0380 (10) 0.0024 (9) 0.0128 (8) −0.0080 (9)

Geometric parameters (Å, º)

Cl1—C2 1.728 (2) C5—C6 1.373 (3)
O1—C1 1.243 (3) C5—H5A 0.9300
N1—C1 1.355 (3) C6—C7 1.391 (3)
N1—C9 1.382 (3) C6—H6A 0.9300
N1—H1 0.9256 C7—C8 1.370 (3)
C1—C2 1.458 (3) C7—H7A 0.9300
C2—C3 1.353 (3) C8—C9 1.393 (3)
C3—C4 1.442 (3) C8—H8A 0.9300
C3—C10 1.506 (2) C10—H10A 0.9600
C4—C9 1.400 (3) C10—H10B 0.9600
C4—C5 1.406 (3) C10—H10C 0.9600
C1—N1—C9 124.95 (17) C5—C6—C7 120.2 (2)
C1—N1—H1 119.6 C5—C6—H6A 119.9
C9—N1—H1 115.4 C7—C6—H6A 119.9
O1—C1—N1 121.42 (18) C8—C7—C6 120.4 (2)
O1—C1—C2 123.80 (19) C8—C7—H7A 119.8
N1—C1—C2 114.78 (17) C6—C7—H7A 119.8
C3—C2—C1 123.60 (18) C7—C8—C9 119.5 (2)
C3—C2—Cl1 122.45 (15) C7—C8—H8A 120.3
C1—C2—Cl1 113.93 (15) C9—C8—H8A 120.3
C2—C3—C4 118.30 (17) N1—C9—C8 119.43 (18)
C2—C3—C10 122.04 (18) N1—C9—C4 119.21 (18)
C4—C3—C10 119.65 (17) C8—C9—C4 121.37 (19)
C9—C4—C5 117.48 (18) C3—C10—H10A 109.5
C9—C4—C3 119.13 (18) C3—C10—H10B 109.5
C5—C4—C3 123.38 (18) H10A—C10—H10B 109.5
C6—C5—C4 121.0 (2) C3—C10—H10C 109.5
C6—C5—H5A 119.5 H10A—C10—H10C 109.5
C4—C5—H5A 119.5 H10B—C10—H10C 109.5
C9—N1—C1—O1 −177.64 (19) C9—C4—C5—C6 −0.9 (3)
C9—N1—C1—C2 1.9 (3) C3—C4—C5—C6 178.36 (19)
O1—C1—C2—C3 177.3 (2) C4—C5—C6—C7 1.4 (3)
N1—C1—C2—C3 −2.2 (3) C5—C6—C7—C8 −0.3 (3)
O1—C1—C2—Cl1 −0.8 (3) C6—C7—C8—C9 −1.2 (3)
N1—C1—C2—Cl1 179.65 (14) C1—N1—C9—C8 178.74 (18)
C1—C2—C3—C4 1.2 (3) C1—N1—C9—C4 −0.6 (3)
Cl1—C2—C3—C4 179.19 (13) C7—C8—C9—N1 −177.72 (19)
C1—C2—C3—C10 −178.76 (18) C7—C8—C9—C4 1.6 (3)
Cl1—C2—C3—C10 −0.7 (3) C5—C4—C9—N1 178.79 (17)
C2—C3—C4—C9 0.2 (3) C3—C4—C9—N1 −0.5 (3)
C10—C3—C4—C9 −179.84 (16) C5—C4—C9—C8 −0.5 (3)
C2—C3—C4—C5 −179.06 (18) C3—C4—C9—C8 −179.88 (17)
C10—C3—C4—C5 0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.93 1.91 2.816 (2) 166

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6671).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hodgkinson, A. J. & Staskun, B. (1969). J. Org. Chem. 34, 1709–1713.
  5. Michael, J. P., De Koning, C. B. & Stanbury, T. V. (1996). Tetrahedron Lett. 37, 9403–9406.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jaisankar, P. & Varghese, B. (2001). Acta Cryst. E57, o234–o235.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009889/hb6671sup1.cif

e-68-o1043-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009889/hb6671Isup2.hkl

e-68-o1043-Isup2.hkl (70.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009889/hb6671Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES