Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1044. doi: 10.1107/S1600536812009440

2-Methyl­pyridinium 5-(2,4-dinitro­phen­yl)-1,3-dimethyl­barbiturate

Gunaseelan Sridevi a, Doraisamyraja Kalaivani a,*
PMCID: PMC3344005  PMID: 22589914

Abstract

In the title mol­ecular salt [systematic name: 2-methyl­pyridinium 5-(2,4-dinitro­phen­yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate], C6H8N+·C12H9N4O7 , the cation and anion are linked a through strong N—H⋯O hydrogen bond. In the crystal, C—H⋯O inter­actions link the ions, generating a chain along [010].

Related literature  

For the biological properties of mol­ecules containing pyridine and pyrimidine units, see: Terekhova & Scriba (2007); Comins et al. (2008); Hueso et al. (2003); Jain et al. (2006). For the structures of barbiturates similar to the title compound, see: Kalaivani & Malarvizhi (2009); Kalaivani & Buvaneswari (2010); Buvaneswari & Kalaivani (2011).graphic file with name e-68-o1044-scheme1.jpg

Experimental  

Crystal data  

  • C6H8N+·C12H9N4O7

  • M r = 415.37

  • Monoclinic, Inline graphic

  • a = 12.8242 (8) Å

  • b = 7.0696 (5) Å

  • c = 21.5409 (14) Å

  • β = 101.029 (2)°

  • V = 1916.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.15 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.917, T max = 0.983

  • 3527 measured reflections

  • 3527 independent reflections

  • 2790 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.099

  • S = 1.04

  • 3527 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009440/bv2197sup1.cif

e-68-o1044-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009440/bv2197Isup2.hkl

e-68-o1044-Isup2.hkl (173.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009440/bv2197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O3 0.86 1.82 2.6645 (16) 168
C13—H13B⋯O5i 0.96 2.42 3.340 (2) 161
C13—H13C⋯O1ii 0.96 2.42 3.160 (2) 134
C15—H15⋯O2iii 0.93 2.29 3.021 (2) 135
C16—H16⋯O6iv 0.93 2.58 3.323 (2) 138
C17—H17⋯O1v 0.93 2.52 3.303 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are thankful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

Many molecules containing the pyridine moiety exhibit notable biological activity (Terekhova & Scriba, 2007; Comins et al., 2008). Molecules with pyrimidine ring residues are also biologically active (Hueso et al., 2003; Jain et al., 2006). The title molecular salt comprises of both pyrimidine (barbiturate moiety) and pyridine (2-methyl pyridinium) moieties and hence expected to have significant biological activity. Good crystallinity of the title compound prompted us to undertake single-crystal X-ray studies. The bond lengths and bond angles of the barbiturate residue of the molecular salt reported in the present article are compatible with those of related barbiturates synthesized in our laboratory earlier (Kalaivani & Malarvizhi, 2009; Kalaivani & Buvaneswari, 2010; Buvaneswari & Kalaivani, 2011). The structure of the molecular salt of the present work is shown in scheme 1. The ORTEP view showing 30% probability displacement ellipsoids is indicated in Fig.1. In the title molecule, the one dimensional zigzag chains which run along [010] direction are linked through C13—H13···O1, C17—H17···O1, C16—H16···O6, C13—H13···O3 and C15—H15···O2 weak interactions thus generating a three dimensional network and hence constituting the molecular packing of the crystal (Fig. 2). The 2,4-dinitrophenyl ring and 1,3-dimethylbarbiturate ring of the title molecule are not perfectly planar and the dihedral angle observed between them is 44.54 (2)degree.

Experimental

1-Chloro-2,4-dinitrobenzene(2.02 g,0.01 mol) was dissolved in 20 ml of ethanol. 1,3-Dimethylbarbituric acid (1.56 g,0.01 mol) was also dissolved in 15 ml of ethanol. These two solutions were mixed and to this mixture a five fold excess of 2-methylpyridine (4.65 g, 0.05 mol) was added and the resulting blood red coloured solution was shaken well for about three hours and kept as such at 25 /%C. Dark shiny maroon red coloured crystals were deposited from the solution after seventy two hours. The crystals were filtered and washed with 30 ml of ether. The crystals were powdered well and washed with 40 ml of ether to remove the unreacted reactants and finally with 10 ml of ethanol. The pure powder was recrystallized from hot ethanol (Yield: 75%; m.p.; 451 K). The crystals for X-ray analysis were obtained by slow evaporation of ethanol at room temperature.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å (CH), 0.96Å (CH2) or 0.98Å (CH3) and an N—H distance of 0.86 Å. The isotropic displacement parameters for these atoms were set to 1.2 (CH, and NH) or 1.50 times Ueq (CH3) of the parent atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of title molecule showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing view of title molecule showing the chains in the [010] direction.

Crystal data

C6H8N+·C12H9N4O7 F(000) = 864
Mr = 415.37 Dx = 1.439 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6197 reflections
a = 12.8242 (8) Å θ = 2.9–25.3°
b = 7.0696 (5) Å µ = 0.11 mm1
c = 21.5409 (14) Å T = 293 K
β = 101.029 (2)° Block, red
V = 1916.9 (2) Å3 0.30 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3527 independent reflections
Radiation source: fine-focus sealed tube 2790 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
ω and φ scan θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −15→15
Tmin = 0.917, Tmax = 0.983 k = 0→8
3527 measured reflections l = 0→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4365P] where P = (Fo2 + 2Fc2)/3
3527 reflections (Δ/σ)max < 0.001
275 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.25790 (8) 0.59806 (19) 0.13771 (6) 0.0652 (4)
O2 0.58313 (8) 0.84817 (17) 0.13910 (5) 0.0521 (3)
O3 0.49962 (8) 0.55652 (17) 0.31960 (5) 0.0550 (3)
O4 0.53244 (10) 0.9752 (2) 0.33842 (6) 0.0694 (4)
O5 0.60991 (12) 0.8263 (2) 0.42199 (6) 0.0831 (4)
O6 0.98964 (12) 0.8224 (3) 0.43012 (8) 0.1054 (6)
O7 1.04967 (11) 0.7451 (2) 0.34758 (8) 0.0851 (5)
N1 0.41979 (10) 0.72838 (19) 0.13974 (6) 0.0457 (3)
N2 0.37859 (9) 0.58307 (18) 0.22914 (6) 0.0453 (3)
N3 0.60166 (12) 0.8717 (2) 0.36639 (6) 0.0552 (4)
N4 0.97702 (13) 0.7814 (2) 0.37450 (9) 0.0678 (5)
C1 0.38684 (15) 0.7872 (3) 0.07370 (8) 0.0711 (6)
H1A 0.4128 0.9125 0.0685 0.107* 0.62 (3)
H1B 0.3107 0.7867 0.0625 0.107* 0.62 (3)
H1C 0.4154 0.7011 0.0468 0.107* 0.62 (3)
H1C1 0.4484 0.8199 0.0567 0.107* 0.38 (3)
H1C2 0.3408 0.8951 0.0715 0.107* 0.38 (3)
H1C3 0.3497 0.6853 0.0496 0.107* 0.38 (3)
C2 0.34662 (11) 0.6346 (2) 0.16695 (7) 0.0461 (4)
C3 0.30525 (14) 0.4711 (3) 0.25827 (10) 0.0714 (6)
H3A 0.2900 0.5371 0.2945 0.107*
H3B 0.3370 0.3510 0.2713 0.107*
H3C 0.2405 0.4516 0.2282 0.107*
C4 0.48022 (11) 0.6176 (2) 0.26412 (7) 0.0404 (3)
C5 0.55251 (10) 0.71463 (19) 0.23462 (6) 0.0363 (3)
C6 0.52461 (11) 0.7686 (2) 0.17015 (7) 0.0390 (3)
C7 0.65998 (11) 0.74854 (18) 0.26967 (6) 0.0351 (3)
C8 0.68428 (11) 0.8054 (2) 0.33312 (7) 0.0412 (3)
C9 0.78652 (12) 0.8162 (2) 0.36788 (7) 0.0476 (4)
H9 0.7991 0.8498 0.4104 0.057*
C10 0.86841 (12) 0.7759 (2) 0.33778 (8) 0.0472 (4)
C11 0.85129 (12) 0.7277 (2) 0.27469 (8) 0.0466 (4)
H11 0.9082 0.7047 0.2547 0.056*
C12 0.74849 (11) 0.7141 (2) 0.24194 (7) 0.0405 (3)
H12 0.7372 0.6805 0.1994 0.049*
N5 0.61757 (9) 0.36331 (18) 0.41383 (6) 0.0434 (3)
H5A 0.5829 0.4153 0.3800 0.052*
C13 0.44507 (13) 0.3047 (3) 0.43878 (8) 0.0616 (5)
H13A 0.4246 0.4261 0.4205 0.092*
H13B 0.4158 0.2883 0.4762 0.092*
H13C 0.4187 0.2072 0.4089 0.092*
C14 0.56244 (12) 0.2933 (2) 0.45537 (7) 0.0447 (4)
C15 0.72358 (12) 0.3570 (2) 0.42194 (8) 0.0530 (4)
H15 0.7579 0.4067 0.3913 0.064*
C16 0.78080 (14) 0.2779 (3) 0.47504 (9) 0.0638 (5)
H16 0.8545 0.2717 0.4811 0.077*
C17 0.72821 (16) 0.2074 (3) 0.51962 (9) 0.0686 (5)
H17 0.7664 0.1546 0.5566 0.082*
C18 0.61948 (15) 0.2143 (3) 0.50993 (8) 0.0602 (5)
H18 0.5841 0.1655 0.5403 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0384 (6) 0.0833 (9) 0.0665 (7) −0.0017 (6) −0.0081 (5) −0.0018 (7)
O2 0.0521 (6) 0.0640 (7) 0.0406 (6) −0.0043 (5) 0.0101 (5) 0.0080 (5)
O3 0.0508 (6) 0.0660 (8) 0.0458 (6) −0.0074 (5) 0.0030 (5) 0.0188 (5)
O4 0.0682 (8) 0.0715 (9) 0.0722 (8) 0.0120 (7) 0.0225 (7) −0.0144 (7)
O5 0.1004 (10) 0.1142 (12) 0.0405 (7) −0.0185 (9) 0.0278 (7) −0.0079 (7)
O6 0.0762 (10) 0.1480 (16) 0.0739 (10) −0.0106 (10) −0.0311 (8) −0.0053 (10)
O7 0.0414 (7) 0.0957 (11) 0.1117 (12) −0.0104 (7) −0.0020 (8) 0.0226 (9)
N1 0.0428 (7) 0.0528 (8) 0.0379 (7) 0.0017 (6) −0.0018 (5) 0.0019 (6)
N2 0.0368 (6) 0.0482 (8) 0.0497 (7) −0.0033 (5) 0.0050 (5) 0.0045 (6)
N3 0.0637 (9) 0.0614 (9) 0.0440 (8) −0.0126 (8) 0.0187 (7) −0.0133 (7)
N4 0.0493 (9) 0.0633 (10) 0.0807 (12) −0.0116 (7) −0.0128 (8) 0.0157 (9)
C1 0.0662 (11) 0.0939 (15) 0.0451 (10) −0.0040 (10) −0.0097 (8) 0.0135 (10)
C2 0.0386 (8) 0.0465 (9) 0.0505 (9) 0.0043 (7) 0.0021 (7) −0.0032 (7)
C3 0.0498 (10) 0.0804 (14) 0.0828 (13) −0.0159 (9) 0.0093 (9) 0.0196 (11)
C4 0.0389 (7) 0.0388 (8) 0.0423 (8) 0.0018 (6) 0.0048 (6) 0.0017 (6)
C5 0.0374 (7) 0.0344 (7) 0.0360 (7) 0.0018 (6) 0.0047 (6) −0.0009 (6)
C6 0.0398 (7) 0.0373 (8) 0.0393 (8) 0.0034 (6) 0.0059 (6) −0.0030 (6)
C7 0.0399 (7) 0.0289 (7) 0.0356 (7) −0.0002 (6) 0.0050 (6) 0.0019 (5)
C8 0.0468 (8) 0.0383 (8) 0.0384 (8) −0.0052 (6) 0.0084 (6) 0.0009 (6)
C9 0.0556 (9) 0.0452 (9) 0.0378 (8) −0.0107 (7) −0.0018 (7) 0.0024 (7)
C10 0.0413 (8) 0.0397 (8) 0.0541 (9) −0.0072 (7) −0.0073 (7) 0.0089 (7)
C11 0.0395 (8) 0.0399 (8) 0.0607 (10) 0.0014 (6) 0.0102 (7) 0.0050 (7)
C12 0.0425 (7) 0.0374 (8) 0.0411 (8) 0.0030 (6) 0.0062 (6) −0.0019 (6)
N5 0.0440 (7) 0.0465 (7) 0.0380 (6) −0.0003 (6) 0.0035 (5) 0.0016 (6)
C13 0.0480 (9) 0.0805 (13) 0.0576 (10) −0.0059 (9) 0.0132 (8) 0.0028 (9)
C14 0.0498 (8) 0.0434 (9) 0.0402 (8) −0.0049 (7) 0.0070 (7) −0.0030 (7)
C15 0.0449 (9) 0.0567 (10) 0.0574 (10) −0.0032 (7) 0.0097 (7) −0.0012 (8)
C16 0.0472 (9) 0.0676 (12) 0.0707 (12) 0.0041 (8) −0.0040 (9) −0.0013 (10)
C17 0.0714 (12) 0.0662 (12) 0.0584 (11) 0.0080 (10) −0.0121 (9) 0.0101 (9)
C18 0.0725 (12) 0.0598 (11) 0.0466 (9) −0.0047 (9) 0.0071 (8) 0.0110 (8)

Geometric parameters (Å, º)

O1—C2 1.2181 (17) C5—C7 1.4591 (18)
O2—C6 1.2325 (17) C7—C12 1.401 (2)
O3—C4 1.2501 (17) C7—C8 1.4014 (19)
O4—N3 1.2174 (19) C8—C9 1.382 (2)
O5—N3 1.2248 (18) C9—C10 1.366 (2)
O6—N4 1.213 (2) C9—H9 0.9300
O7—N4 1.215 (2) C10—C11 1.377 (2)
N1—C2 1.369 (2) C11—C12 1.374 (2)
N1—C6 1.4071 (18) C11—H11 0.9300
N1—C1 1.465 (2) C12—H12 0.9300
N2—C2 1.3728 (19) N5—C14 1.3370 (19)
N2—C4 1.3966 (18) N5—C15 1.3379 (19)
N2—C3 1.460 (2) N5—H5A 0.8600
N3—C8 1.465 (2) C13—C14 1.481 (2)
N4—C10 1.465 (2) C13—H13A 0.9600
C1—H1A 0.9600 C13—H13B 0.9600
C1—H1B 0.9600 C13—H13C 0.9600
C1—H1C 0.9600 C14—C18 1.378 (2)
C1—H1C1 0.9599 C15—C16 1.356 (2)
C1—H1C2 0.9600 C15—H15 0.9300
C1—H1C3 0.9600 C16—C17 1.369 (3)
C3—H3A 0.9600 C16—H16 0.9300
C3—H3B 0.9600 C17—C18 1.371 (3)
C3—H3C 0.9600 C17—H17 0.9300
C4—C5 1.400 (2) C18—H18 0.9300
C5—C6 1.418 (2)
C2—N1—C6 124.79 (12) C8—C7—C5 124.30 (13)
C2—N1—C1 117.35 (13) C9—C8—C7 123.72 (14)
C6—N1—C1 117.85 (13) C9—C8—N3 114.66 (13)
C2—N2—C4 123.63 (13) C7—C8—N3 121.48 (13)
C2—N2—C3 117.81 (13) C10—C9—C8 117.86 (14)
C4—N2—C3 118.32 (13) C10—C9—H9 121.1
O4—N3—O5 124.05 (15) C8—C9—H9 121.1
O4—N3—C8 118.52 (13) C9—C10—C11 121.88 (13)
O5—N3—C8 117.33 (15) C9—C10—N4 118.44 (15)
O6—N4—O7 123.52 (16) C11—C10—N4 119.67 (16)
O6—N4—C10 118.22 (18) C12—C11—C10 118.68 (15)
O7—N4—C10 118.26 (17) C12—C11—H11 120.7
N1—C1—H1A 109.5 C10—C11—H11 120.7
N1—C1—H1B 109.5 C11—C12—C7 123.00 (14)
N1—C1—H1C 109.5 C11—C12—H12 118.5
N1—C1—H1C1 109.5 C7—C12—H12 118.5
N1—C1—H1C2 109.5 C14—N5—C15 123.68 (13)
H1C1—C1—H1C2 109.5 C14—N5—H5A 118.2
N1—C1—H1C3 109.5 C15—N5—H5A 118.2
H1C1—C1—H1C3 109.5 C14—C13—H13A 109.5
H1C2—C1—H1C3 109.5 C14—C13—H13B 109.5
O1—C2—N1 122.01 (14) H13A—C13—H13B 109.5
O1—C2—N2 121.56 (15) C14—C13—H13C 109.5
N1—C2—N2 116.43 (12) H13A—C13—H13C 109.5
N2—C3—H3A 109.5 H13B—C13—H13C 109.5
N2—C3—H3B 109.5 N5—C14—C18 117.29 (15)
H3A—C3—H3B 109.5 N5—C14—C13 117.48 (13)
N2—C3—H3C 109.5 C18—C14—C13 125.23 (15)
H3A—C3—H3C 109.5 N5—C15—C16 119.76 (16)
H3B—C3—H3C 109.5 N5—C15—H15 120.1
O3—C4—N2 116.74 (13) C16—C15—H15 120.1
O3—C4—C5 125.13 (13) C15—C16—C17 118.83 (17)
N2—C4—C5 118.13 (13) C15—C16—H16 120.6
C4—C5—C6 120.76 (12) C17—C16—H16 120.6
C4—C5—C7 119.19 (12) C16—C17—C18 120.25 (16)
C6—C5—C7 119.92 (12) C16—C17—H17 119.9
O2—C6—N1 117.79 (13) C18—C17—H17 119.9
O2—C6—C5 126.04 (13) C17—C18—C14 120.18 (17)
N1—C6—C5 116.17 (13) C17—C18—H18 119.9
C12—C7—C8 114.74 (13) C14—C18—H18 119.9
C12—C7—C5 120.86 (13)
C6—N1—C2—O1 −177.51 (15) C5—C7—C8—C9 172.31 (14)
C1—N1—C2—O1 1.1 (2) C12—C7—C8—N3 171.51 (13)
C6—N1—C2—N2 2.3 (2) C5—C7—C8—N3 −12.2 (2)
C1—N1—C2—N2 −179.10 (15) O4—N3—C8—C9 134.74 (15)
C4—N2—C2—O1 178.35 (15) O5—N3—C8—C9 −41.7 (2)
C3—N2—C2—O1 4.1 (2) O4—N3—C8—C7 −41.1 (2)
C4—N2—C2—N1 −1.5 (2) O5—N3—C8—C7 142.42 (15)
C3—N2—C2—N1 −175.71 (15) C7—C8—C9—C10 2.6 (2)
C2—N2—C4—O3 −177.37 (14) N3—C8—C9—C10 −173.16 (14)
C3—N2—C4—O3 −3.1 (2) C8—C9—C10—C11 0.6 (2)
C2—N2—C4—C5 1.8 (2) C8—C9—C10—N4 −178.24 (14)
C3—N2—C4—C5 176.00 (15) O6—N4—C10—C9 −0.4 (2)
O3—C4—C5—C6 176.28 (14) O7—N4—C10—C9 179.87 (15)
N2—C4—C5—C6 −2.8 (2) O6—N4—C10—C11 −179.24 (17)
O3—C4—C5—C7 0.5 (2) O7—N4—C10—C11 1.0 (2)
N2—C4—C5—C7 −178.55 (12) C9—C10—C11—C12 −2.1 (2)
C2—N1—C6—O2 177.41 (14) N4—C10—C11—C12 176.75 (14)
C1—N1—C6—O2 −1.2 (2) C10—C11—C12—C7 0.5 (2)
C2—N1—C6—C5 −3.3 (2) C8—C7—C12—C11 2.4 (2)
C1—N1—C6—C5 178.11 (14) C5—C7—C12—C11 −174.04 (13)
C4—C5—C6—O2 −177.32 (14) C15—N5—C14—C18 1.4 (2)
C7—C5—C6—O2 −1.6 (2) C15—N5—C14—C13 −177.90 (16)
C4—C5—C6—N1 3.4 (2) C14—N5—C15—C16 −0.7 (2)
C7—C5—C6—N1 179.18 (12) N5—C15—C16—C17 −0.6 (3)
C4—C5—C7—C12 133.84 (15) C15—C16—C17—C18 1.1 (3)
C6—C5—C7—C12 −41.96 (19) C16—C17—C18—C14 −0.4 (3)
C4—C5—C7—C8 −42.2 (2) N5—C14—C18—C17 −0.8 (3)
C6—C5—C7—C8 142.00 (14) C13—C14—C18—C17 178.41 (18)
C12—C7—C8—C9 −3.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5A···O3 0.86 1.82 2.6645 (16) 168
C13—H13B···O5i 0.96 2.42 3.340 (2) 161
C13—H13C···O1ii 0.96 2.42 3.160 (2) 134
C15—H15···O2iii 0.93 2.29 3.021 (2) 135
C16—H16···O6iv 0.93 2.58 3.323 (2) 138
C17—H17···O1v 0.93 2.52 3.303 (2) 143

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2197).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  2. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434. [DOI] [PMC free article] [PubMed]
  4. Comins, D. L., Connor, S. O. & Al-awar, R. S. (2008). Pyridines and their derivatives, pp. 1–59. Indianapolis, IN, USA: Eli Lilly & Co.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hueso, F., Moreno, M. N., Martinez, J. M. & Ramirez, M. J. (2003). J. Inorg. Biochem 94, 326–334.
  7. Jain, K. S., Chitra, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, V. S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793–803.
  8. Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. UK: WSEAS Publications.
  9. Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Terekhova, I. V. & Scriba, G. K. E. (2007). J. Pharm. Biomed. Anal 45, 688–693. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009440/bv2197sup1.cif

e-68-o1044-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009440/bv2197Isup2.hkl

e-68-o1044-Isup2.hkl (173.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009440/bv2197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES