Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1049. doi: 10.1107/S1600536812010070

1-(3,3-Dichloro­all­yloxy)-2-nitro­benzene

Dong-mei Ren a,*, Yong-yi Wang a
PMCID: PMC3344010  PMID: 22589919

Abstract

In the title compound, C9H7Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 50.2 (1)°, and that between the benzene ring and the best plane through the dichloro­allyl fragment is 40.1 (1)°.

Related literature  

For the synthesis and applications of the title compound, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1049-scheme1.jpg

Experimental  

Crystal data  

  • C9H7Cl2NO3

  • M r = 248.06

  • Monoclinic, Inline graphic

  • a = 4.0210 (8) Å

  • b = 21.506 (4) Å

  • c = 12.333 (3) Å

  • β = 96.41 (3)°

  • V = 1059.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.841, T max = 0.943

  • 4390 measured reflections

  • 1941 independent reflections

  • 1416 reflections with I > 2σ(I)

  • R int = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.164

  • S = 1.00

  • 1941 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010070/vm2161sup1.cif

e-68-o1049-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010070/vm2161Isup2.hkl

e-68-o1049-Isup2.hkl (95.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010070/vm2161Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported financially by the Capital University of Economics and Business (00891162721716) and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The title compound, 1-(3,3-dichloroallyloxy)-2-nitrobenzene is an important intermediate in the synthesis of phenanthrenes (Walker et al., 2005). Here we report here the molecular and crystal structure of the title compound (Fig. 1).

There are no classic hydrogen bonds found, but a short intramolecular contact C7—H7B···Cl2 is observed (C7—H7B: 0.97 Å, H7B···Cl2: 2.700 Å, C7···Cl2: 3.139 (3) Å, C7—H7B···Cl2: 108.00).

The dihedral angle between the benzene ring (C1—C6) and the plane of the nitro group is 50.2 (1)°, and between the benzene ring and the best plane through the dichloroallyl fragment (C7—C9, Cl1, Cl2) 40.1 (1)°.

The packing is shown in Figure 2 and contains a short Cl1···Cl2 (x + 1, y, z) contact (3.6668 (16) Å).

Experimental

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed down the a-axis.

Crystal data

C9H7Cl2NO3 F(000) = 504
Mr = 248.06 Dx = 1.555 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 4.0210 (8) Å θ = 10–13°
b = 21.506 (4) Å µ = 0.60 mm1
c = 12.333 (3) Å T = 293 K
β = 96.41 (3)° Block, colourless
V = 1059.8 (4) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.063
Graphite monochromator θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→4
Absorption correction: ψ scan (North et al., 1968) k = −25→25
Tmin = 0.841, Tmax = 0.943 l = −14→14
4390 measured reflections 3 standard reflections every 200 reflections
1941 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P] where P = (Fo2 + 2Fc2)/3
1941 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N −0.0930 (8) 0.17453 (13) 0.1420 (2) 0.0607 (7)
Cl1 0.6644 (2) 0.46194 (4) 0.18851 (7) 0.0679 (3)
C1 0.1777 (8) 0.19522 (14) 0.4390 (2) 0.0509 (7)
H1A 0.2853 0.2241 0.4870 0.061*
O1 −0.0106 (14) 0.13642 (18) 0.0804 (2) 0.1309 (16)
Cl2 0.3945 (3) 0.44863 (4) 0.39369 (7) 0.0729 (3)
C2 0.0679 (9) 0.13945 (15) 0.4779 (3) 0.0591 (8)
H2A 0.0987 0.1315 0.5525 0.071*
O2 −0.2241 (10) 0.22293 (15) 0.1110 (2) 0.0977 (10)
O3 0.2229 (6) 0.26084 (9) 0.28095 (15) 0.0551 (6)
C3 −0.0868 (9) 0.09520 (15) 0.4083 (3) 0.0612 (9)
H3A −0.1589 0.0579 0.4358 0.073*
C4 −0.1329 (9) 0.10674 (14) 0.2985 (3) 0.0568 (8)
H4A −0.2332 0.0771 0.2507 0.068*
C5 −0.0295 (8) 0.16271 (13) 0.2596 (2) 0.0469 (7)
C6 0.1265 (7) 0.20796 (12) 0.3279 (2) 0.0430 (6)
C7 0.4163 (8) 0.30524 (12) 0.3477 (2) 0.0480 (7)
H7A 0.6064 0.2853 0.3891 0.058*
H7B 0.2808 0.3250 0.3982 0.058*
C8 0.5296 (7) 0.35136 (14) 0.2706 (2) 0.0491 (7)
H8A 0.6086 0.3361 0.2077 0.059*
C9 0.5280 (8) 0.41198 (13) 0.2834 (2) 0.0495 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0812 (19) 0.0533 (16) 0.0480 (13) −0.0130 (14) 0.0079 (14) −0.0101 (12)
Cl1 0.0832 (6) 0.0472 (5) 0.0752 (6) −0.0049 (4) 0.0172 (5) 0.0102 (4)
C1 0.0600 (18) 0.0462 (16) 0.0462 (14) 0.0020 (13) 0.0041 (14) −0.0025 (11)
O1 0.220 (5) 0.112 (3) 0.0666 (17) 0.022 (3) 0.040 (2) −0.0235 (17)
Cl2 0.1011 (7) 0.0526 (5) 0.0672 (5) 0.0023 (4) 0.0188 (5) −0.0173 (4)
C2 0.074 (2) 0.0536 (18) 0.0500 (16) 0.0020 (16) 0.0084 (16) 0.0078 (13)
O2 0.135 (3) 0.095 (2) 0.0579 (15) 0.003 (2) −0.0152 (16) 0.0072 (14)
O3 0.0769 (15) 0.0431 (11) 0.0442 (10) −0.0160 (10) 0.0011 (10) 0.0008 (8)
C3 0.079 (2) 0.0393 (16) 0.0656 (19) −0.0027 (15) 0.0118 (17) 0.0086 (13)
C4 0.067 (2) 0.0393 (15) 0.0654 (19) −0.0041 (14) 0.0134 (16) −0.0075 (13)
C5 0.0562 (17) 0.0428 (16) 0.0429 (13) 0.0000 (12) 0.0112 (12) −0.0062 (11)
C6 0.0482 (15) 0.0364 (14) 0.0451 (13) 0.0027 (11) 0.0082 (12) −0.0041 (10)
C7 0.0560 (17) 0.0402 (15) 0.0464 (14) −0.0034 (12) −0.0003 (13) −0.0040 (11)
C8 0.0521 (17) 0.0419 (15) 0.0537 (15) −0.0033 (12) 0.0078 (14) −0.0035 (11)
C9 0.0548 (18) 0.0421 (16) 0.0512 (16) −0.0006 (12) 0.0042 (14) −0.0020 (11)

Geometric parameters (Å, º)

N—O1 1.189 (4) O3—C7 1.432 (3)
N—O2 1.209 (4) C3—C4 1.368 (5)
N—C5 1.466 (4) C3—H3A 0.9300
Cl1—C9 1.723 (3) C4—C5 1.378 (4)
C1—C2 1.382 (4) C4—H4A 0.9300
C1—C6 1.390 (4) C5—C6 1.390 (4)
C1—H1A 0.9300 C7—C8 1.481 (4)
Cl2—C9 1.710 (3) C7—H7A 0.9700
C2—C3 1.382 (5) C7—H7B 0.9700
C2—H2A 0.9300 C8—C9 1.313 (4)
O3—C6 1.352 (3) C8—H8A 0.9300
O1—N—O2 122.3 (3) C4—C5—N 118.1 (3)
O1—N—C5 118.8 (3) C6—C5—N 119.7 (3)
O2—N—C5 118.9 (3) O3—C6—C1 124.7 (2)
C2—C1—C6 119.7 (3) O3—C6—C5 117.4 (2)
C2—C1—H1A 120.1 C1—C6—C5 117.8 (3)
C6—C1—H1A 120.1 O3—C7—C8 105.3 (2)
C1—C2—C3 121.4 (3) O3—C7—H7A 110.7
C1—C2—H2A 119.3 C8—C7—H7A 110.7
C3—C2—H2A 119.3 O3—C7—H7B 110.7
C6—O3—C7 118.5 (2) C8—C7—H7B 110.7
C4—C3—C2 119.5 (3) H7A—C7—H7B 108.8
C4—C3—H3A 120.3 C9—C8—C7 125.6 (3)
C2—C3—H3A 120.3 C9—C8—H8A 117.2
C3—C4—C5 119.4 (3) C7—C8—H8A 117.2
C3—C4—H4A 120.3 C8—C9—Cl2 124.0 (2)
C5—C4—H4A 120.3 C8—C9—Cl1 122.1 (2)
C4—C5—C6 122.2 (3) Cl2—C9—Cl1 113.89 (17)
C6—C1—C2—C3 1.3 (5) C2—C1—C6—O3 180.0 (3)
C1—C2—C3—C4 −0.1 (6) C2—C1—C6—C5 −1.3 (4)
C2—C3—C4—C5 −1.1 (5) C4—C5—C6—O3 178.9 (3)
C3—C4—C5—C6 1.1 (5) N—C5—C6—O3 −2.1 (4)
C3—C4—C5—N −177.9 (3) C4—C5—C6—C1 0.1 (4)
O1—N—C5—C4 −50.7 (5) N—C5—C6—C1 179.1 (3)
O2—N—C5—C4 130.1 (4) C6—O3—C7—C8 170.5 (2)
O1—N—C5—C6 130.2 (4) O3—C7—C8—C9 136.4 (3)
O2—N—C5—C6 −49.0 (5) C7—C8—C9—Cl2 0.4 (5)
C7—O3—C6—C1 5.5 (4) C7—C8—C9—Cl1 −179.8 (2)
C7—O3—C6—C5 −173.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7B···Cl2 0.97 2.70 3.139 (3) 108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2161).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010070/vm2161sup1.cif

e-68-o1049-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010070/vm2161Isup2.hkl

e-68-o1049-Isup2.hkl (95.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010070/vm2161Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES