Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1065. doi: 10.1107/S1600536812010501

(2E)-2-(Furan-2-yl­methyl­idene)-2,3-dihydro-1H-inden-1-one

Abdullah M Asiri a,b,, Hassan M Faidallah a, Khulud F Al-Nemari a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344023  PMID: 22589932

Abstract

In the title compound, C14H10O2, the five-membered ring of the inden-1-one residue is almost planar (r.m.s. deviation = 0.035 Å). A twist about the single bond linking the two residues is evident [C—C—C—C torsion angle = −13.2 (5)°]. The three-dimensional architecture is stabilized by C—H⋯O (involving the trifurcated carbonyl O atom), C—H⋯π and π–π inter­actions [between the five- and six-membered rings of inden-1-one residues; ring centroid–centroid distance = 3.7983 (17) Å]. The sample studied was a non-merohedral twin; the minor component refined to approximately 36%.

Related literature  

For the biological activity of related species, see: Vera-DiVaio et al. (2009). For related structures, see: Asiri et al. (2012a ,b ). For the treatment of twinned data, see: Spek (2009).graphic file with name e-68-o1065-scheme1.jpg

Experimental  

Crystal data  

  • C14H10O2

  • M r = 210.22

  • Monoclinic, Inline graphic

  • a = 5.9333 (8) Å

  • b = 7.6605 (6) Å

  • c = 22.386 (3) Å

  • β = 91.582 (14)°

  • V = 1017.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.978, T max = 0.995

  • 5052 measured reflections

  • 3274 independent reflections

  • 2683 reflections with I > 2σ(I)

  • R int = 0.086

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.251

  • S = 1.10

  • 3274 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010501/bt5838sup1.cif

e-68-o1065-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010501/bt5838Isup2.hkl

e-68-o1065-Isup2.hkl (160.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010501/bt5838Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.414 (4) 149
C8—H8A⋯O1ii 0.99 2.37 3.343 (4) 166
C14—H14⋯O1iii 0.95 2.45 3.372 (4) 164
C8—H8BCg1iv 0.99 2.70 3.517 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound, 2-furan-2-ylmethylene-indan-1-one (I), has been investigated crystallographically in connection with recent structural studies on related derivatives (Asiri et al., 2012a; Asiri et al., 2012b). The motivation for the original synthesis of (I) is its relationship to biologically active compounds (Vera-DiVaio et al., 2009).

In the molecule of (I), Fig. 1, the five-membered ring of the inden-1-one residue is planar with the r.m.s. deviation for the five atoms = 0.035 Å [maximum deviations = 0.031 (2) for the C9 atom and -0.026 (3) for the C8 atom]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C12 torsion angle being -13.2 (5)°. The configuration about the C9═C10 bond [1.346 (4) Å] is E.

The carbonyl-O1 atom is tri-furcated, forming three C—H···O interactions which lead to a three-dimensional architecture. Additional interactions in the crystal packing include C—H···π interactions, Table 1, as well as π–π contacts between the five- and six-membered rings of inden-1-one residue [ring centroid···centroid distance = 3.7983 (17) Å, angle of inclination = 1.02 (14)° for symmetry operation 1 - x, -y, 1 - z], Fig. 2.

Experimental

A solution of the furan-2-carboxaldehyde (0.95 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g,0.01 M) in (20%) ethanolic KOH (20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured into water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yield: 92%. M.pt: 393–395 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The studied sample was a non-merohedral twin (the twin law is 1 0 0.015, 0 1 0, 0 0 1). The twin domains were separated by using the TwinRotMat routine in PLATON (Spek, 2009) and the minor component refined to 0.362 (3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···π and π–π interactions are shown as orange, brown and purple dashed lines, respectively.

Crystal data

C14H10O2 F(000) = 440
Mr = 210.22 Dx = 1.373 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1169 reflections
a = 5.9333 (8) Å θ = 2.7–27.5°
b = 7.6605 (6) Å µ = 0.09 mm1
c = 22.386 (3) Å T = 100 K
β = 91.582 (14)° Plate, light-brown
V = 1017.1 (2) Å3 0.25 × 0.25 × 0.05 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3274 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2683 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.086
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.8°
ω scan h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→9
Tmin = 0.978, Tmax = 0.995 l = −28→29
5052 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1697P)2 + 0.358P] where P = (Fo2 + 2Fc2)/3
3274 reflections (Δ/σ)max = 0.001
146 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.38 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8036 (3) 0.1044 (3) 0.41473 (10) 0.0225 (5)
O2 0.3114 (4) 0.3830 (3) 0.25105 (10) 0.0247 (6)
C1 0.6426 (5) 0.1749 (3) 0.43739 (13) 0.0158 (6)
C2 0.6084 (5) 0.2043 (3) 0.50122 (13) 0.0165 (6)
C3 0.7489 (5) 0.1602 (4) 0.55034 (14) 0.0198 (6)
H3 0.8888 0.1028 0.5449 0.024*
C4 0.6783 (5) 0.2028 (4) 0.60685 (14) 0.0248 (7)
H4 0.7724 0.1762 0.6406 0.030*
C5 0.4707 (6) 0.2842 (4) 0.61507 (14) 0.0249 (7)
H5 0.4248 0.3100 0.6544 0.030*
C6 0.3307 (5) 0.3279 (4) 0.56689 (14) 0.0217 (7)
H6 0.1902 0.3840 0.5727 0.026*
C7 0.4012 (5) 0.2875 (3) 0.50936 (14) 0.0174 (6)
C8 0.2794 (5) 0.3192 (4) 0.44983 (13) 0.0173 (6)
H8A 0.1365 0.2526 0.4469 0.021*
H8B 0.2464 0.4448 0.4439 0.021*
C9 0.4447 (5) 0.2549 (3) 0.40530 (14) 0.0171 (6)
C10 0.4384 (5) 0.2705 (4) 0.34539 (14) 0.0176 (6)
H10 0.5628 0.2246 0.3247 0.021*
C11 0.2621 (5) 0.3496 (4) 0.31001 (14) 0.0195 (6)
C12 0.0463 (5) 0.4025 (4) 0.31992 (15) 0.0237 (7)
H12 −0.0304 0.3951 0.3565 0.028*
C13 −0.0413 (6) 0.4706 (4) 0.26501 (16) 0.0274 (8)
H13 −0.1881 0.5165 0.2576 0.033*
C14 0.1252 (5) 0.4571 (4) 0.22545 (15) 0.0248 (7)
H14 0.1135 0.4946 0.1850 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0194 (11) 0.0244 (11) 0.0235 (12) 0.0027 (9) −0.0027 (9) −0.0039 (9)
O2 0.0255 (12) 0.0295 (11) 0.0186 (11) −0.0028 (10) −0.0054 (9) 0.0042 (9)
C1 0.0176 (14) 0.0118 (12) 0.0178 (14) −0.0041 (11) −0.0043 (11) 0.0015 (11)
C2 0.0193 (15) 0.0099 (12) 0.0200 (15) −0.0036 (11) −0.0035 (11) 0.0008 (11)
C3 0.0190 (14) 0.0170 (13) 0.0229 (15) −0.0047 (12) −0.0074 (11) 0.0033 (12)
C4 0.0303 (18) 0.0219 (15) 0.0217 (16) −0.0050 (13) −0.0100 (13) 0.0099 (12)
C5 0.0370 (19) 0.0245 (15) 0.0131 (14) −0.0084 (14) 0.0009 (13) 0.0016 (12)
C6 0.0230 (16) 0.0201 (14) 0.0221 (15) −0.0078 (13) 0.0014 (12) 0.0004 (12)
C7 0.0208 (15) 0.0106 (11) 0.0205 (15) −0.0046 (11) −0.0030 (11) −0.0005 (11)
C8 0.0172 (15) 0.0148 (12) 0.0197 (14) −0.0006 (11) −0.0011 (11) −0.0028 (11)
C9 0.0149 (14) 0.0127 (12) 0.0233 (15) −0.0041 (11) −0.0037 (11) −0.0002 (12)
C10 0.0151 (14) 0.0166 (13) 0.0211 (15) −0.0026 (11) −0.0029 (11) −0.0033 (11)
C11 0.0256 (15) 0.0161 (13) 0.0166 (15) 0.0000 (12) −0.0046 (12) −0.0015 (11)
C12 0.0223 (16) 0.0281 (15) 0.0204 (16) 0.0048 (13) −0.0033 (11) −0.0011 (13)
C13 0.032 (2) 0.0290 (16) 0.0210 (16) 0.0024 (15) −0.0080 (12) 0.0009 (14)
C14 0.0253 (18) 0.0261 (15) 0.0224 (17) −0.0044 (13) −0.0097 (12) 0.0065 (13)

Geometric parameters (Å, º)

O1—C1 1.220 (4) C6—H6 0.9500
O2—C14 1.355 (4) C7—C8 1.518 (4)
O2—C11 1.384 (4) C8—C9 1.501 (4)
C1—C2 1.466 (4) C8—H8A 0.9900
C1—C9 1.491 (4) C8—H8B 0.9900
C2—C7 1.401 (4) C9—C10 1.346 (4)
C2—C3 1.403 (4) C10—C11 1.429 (4)
C3—C4 1.383 (5) C10—H10 0.9500
C3—H3 0.9500 C11—C12 1.367 (4)
C4—C5 1.398 (5) C12—C13 1.420 (4)
C4—H4 0.9500 C12—H12 0.9500
C5—C6 1.384 (4) C13—C14 1.349 (5)
C5—H5 0.9500 C13—H13 0.9500
C6—C7 1.400 (5) C14—H14 0.9500
C14—O2—C11 106.8 (2) C9—C8—H8A 111.2
O1—C1—C2 127.2 (3) C7—C8—H8A 111.2
O1—C1—C9 126.6 (3) C9—C8—H8B 111.2
C2—C1—C9 106.1 (2) C7—C8—H8B 111.2
C7—C2—C3 120.8 (3) H8A—C8—H8B 109.1
C7—C2—C1 110.0 (3) C10—C9—C1 121.1 (3)
C3—C2—C1 129.2 (3) C10—C9—C8 129.2 (3)
C4—C3—C2 118.2 (3) C1—C9—C8 109.6 (2)
C4—C3—H3 120.9 C9—C10—C11 126.1 (3)
C2—C3—H3 120.9 C9—C10—H10 116.9
C3—C4—C5 121.1 (3) C11—C10—H10 116.9
C3—C4—H4 119.5 C12—C11—O2 108.9 (3)
C5—C4—H4 119.5 C12—C11—C10 135.2 (3)
C6—C5—C4 121.2 (3) O2—C11—C10 115.9 (3)
C6—C5—H5 119.4 C11—C12—C13 106.9 (3)
C4—C5—H5 119.4 C11—C12—H12 126.6
C5—C6—C7 118.4 (3) C13—C12—H12 126.6
C5—C6—H6 120.8 C14—C13—C12 106.4 (3)
C7—C6—H6 120.8 C14—C13—H13 126.8
C6—C7—C2 120.4 (3) C12—C13—H13 126.8
C6—C7—C8 128.7 (3) C13—C14—O2 111.0 (3)
C2—C7—C8 110.9 (3) C13—C14—H14 124.5
C9—C8—C7 103.1 (2) O2—C14—H14 124.5
O1—C1—C2—C7 −179.3 (3) O1—C1—C9—C10 −6.6 (4)
C9—C1—C2—C7 2.9 (3) C2—C1—C9—C10 171.3 (3)
O1—C1—C2—C3 0.2 (5) O1—C1—C9—C8 177.2 (3)
C9—C1—C2—C3 −177.6 (3) C2—C1—C9—C8 −5.0 (3)
C7—C2—C3—C4 −0.6 (4) C7—C8—C9—C10 −170.9 (3)
C1—C2—C3—C4 179.9 (3) C7—C8—C9—C1 5.0 (3)
C2—C3—C4—C5 1.3 (4) C1—C9—C10—C11 −177.8 (3)
C3—C4—C5—C6 −1.2 (5) C8—C9—C10—C11 −2.4 (5)
C4—C5—C6—C7 0.4 (4) C14—O2—C11—C12 0.4 (3)
C5—C6—C7—C2 0.2 (4) C14—O2—C11—C10 180.0 (2)
C5—C6—C7—C8 179.2 (3) C9—C10—C11—C12 −13.2 (5)
C3—C2—C7—C6 −0.1 (4) C9—C10—C11—O2 167.3 (3)
C1—C2—C7—C6 179.5 (2) O2—C11—C12—C13 0.2 (3)
C3—C2—C7—C8 −179.3 (2) C10—C11—C12—C13 −179.4 (3)
C1—C2—C7—C8 0.3 (3) C11—C12—C13—C14 −0.6 (4)
C6—C7—C8—C9 177.6 (3) C12—C13—C14—O2 0.9 (4)
C2—C7—C8—C9 −3.3 (3) C11—O2—C14—C13 −0.8 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.95 2.56 3.414 (4) 149
C8—H8A···O1ii 0.99 2.37 3.343 (4) 166
C14—H14···O1iii 0.95 2.45 3.372 (4) 164
C8—H8B···Cg1iv 0.99 2.70 3.517 (3) 140

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5838).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o755. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o814. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010501/bt5838sup1.cif

e-68-o1065-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010501/bt5838Isup2.hkl

e-68-o1065-Isup2.hkl (160.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010501/bt5838Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES