Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1066. doi: 10.1107/S1600536812010252

(1H-1,2,3-Benzotriazol-1-yl)methyl 2,2-dimethyl­propano­ate

Sen Xu a,*, Yingzhong Shen a
PMCID: PMC3344024  PMID: 22589933

Abstract

In the title compound, C12H15N3O2, the dihedral angle between the mean planes of the benzene and triazole rings is 0.331 (53) °. The side chain of the pivalate unit forms a dihedral angle of 69.04 (12)° with the benzotriazole unit. The ester group and two methyl groups of the pivalate unit are disordered with an occupancy ratio of 0.731 (3):0.269 (3). In the crystal, weak π–π stacking inter­actions are observed between inversion-related benzene rings [centroid–centroid distance = 3.9040 (1) Å].

Related literature  

For a related structure, see: Li & Chen (2011). For applications of benzotriazole derivatives, see: Wan & Lv (2010). For related coordination compounds, see: Hang & Ye (2008); Xu & Shen (2012).graphic file with name e-68-o1066-scheme1.jpg

Experimental  

Crystal data  

  • C12H15N3O2

  • M r = 233.27

  • Monoclinic, Inline graphic

  • a = 8.1507 (3) Å

  • b = 16.7258 (8) Å

  • c = 9.2967 (4) Å

  • β = 98.354 (3)°

  • V = 1253.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.975, T max = 0.981

  • 9487 measured reflections

  • 2206 independent reflections

  • 1738 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.128

  • S = 1.03

  • 2206 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010252/jj2123sup1.cif

e-68-o1066-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010252/jj2123Isup2.hkl

e-68-o1066-Isup2.hkl (108.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010252/jj2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province of China (BK2008401) and the Natural Science Foundation of China (21172107)

supplementary crystallographic information

Comment

Nobenzotriazole derivatives have been extensively studied, not only for their potential application in antibacterial activities (Wan & Lv, 2010), but also for synthesizing benzotriazole coordination complexs (Hang & Ye, 2008). In continuing our work with new benzotriazole coordination complexs (Xu & Shen, 2012), we have synthesized a new N-donor benzotriazole derivative ligand, C12H15N3O2, Fig. 1 Bond lengths and angles are similar to those in related benzotriazol-1-yl intermediate derivatives (Li & Chen, 2011, Wan & Lv, 2010). The ester group and two methyl groups in the pivalate unit are disordered, In the crystal, weak π–π stacking interactions are abserved between the inversion related phenyl rings (centroid-centroid distances = 3.9040 (1)°).

Experimental

To a 250 ml round flask was added (1H-benzo[d][1,2,3]triazol-1-yl)methanol(3.73 g, 0.025 mol), methylene chloride(20 mL) and triethylamine(7.0 mL) with magnetic stirring atroom tempertature for 1 h. Pivaloyl chloride(3.32 g, 0.028 mol) was then added to the solution in the ice bath. The mixture was then refluxed for 6 h at 303 K under a nitrogen atmosphere. When the reaction was completed, the solvent was evaporated in vacuo, and the residue was washed with distilled water and purified by recrystallization from diethyl ether (Yield: 83.2%). Colorless crystals suitable for X-ray analysis were obtained by slow evaporation from diethyl ether at room temperature.

Refinement

The H atoms on the CH2 group were located by difference maps and freely refined without constraints. H atoms bonded to the remaining C atoms were included in calculated positions and treated as riding with C–H = 0.93–0.97Å and Uiso(H)=1.2Ueq(aromatic C) or Uiso(H) = 1.5Ueq(CH3). The ester(–O—CO–) and two methyl groups (C10, C11) in the pivalate unit are disordered over two side positions with site occupation factors 0.731 (3)/0.269 (3). The C—C, C—O distances and angles of the disordered groups were refined without restraints.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids. Dashed lines indicate disordered ester and methyl groups.

Crystal data

C12H15N3O2 F(000) = 496
Mr = 233.27 Dx = 1.236 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3348 reflections
a = 8.1507 (3) Å θ = 2.5–26.7°
b = 16.7258 (8) Å µ = 0.09 mm1
c = 9.2967 (4) Å T = 296 K
β = 98.354 (3)° Block, colourless
V = 1253.94 (9) Å3 0.30 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2206 independent reflections
Radiation source: fine-focus sealed tube 1738 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 2.4°
phi and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −19→19
Tmin = 0.975, Tmax = 0.981 l = −11→10
9487 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1761P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2206 reflections Δρmax = 0.18 e Å3
214 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.240 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.2265 (3) 0.74088 (14) 0.5551 (2) 0.0766 (6) 0.731 (3)
O2 0.1680 (2) 0.82951 (11) 0.3775 (2) 0.0968 (7) 0.731 (3)
O1A 0.1824 (8) 0.7730 (4) 0.4914 (9) 0.0822 (19) 0.269 (3)
O2A 0.3972 (6) 0.6944 (3) 0.5729 (7) 0.111 (2) 0.269 (3)
N1 0.04557 (15) 0.65313 (9) 0.40894 (14) 0.0722 (4)
N2 −0.05972 (18) 0.66728 (11) 0.28420 (19) 0.0925 (5)
N3 −0.0594 (2) 0.60557 (12) 0.19956 (17) 0.0958 (5)
C1 0.11500 (17) 0.57919 (10) 0.40336 (15) 0.0648 (4)
C2 0.2279 (2) 0.53528 (13) 0.49892 (19) 0.0840 (6)
H2 0.2739 0.5551 0.5893 0.101*
C3 0.2672 (2) 0.46083 (15) 0.4516 (3) 0.1008 (7)
H3 0.3428 0.4297 0.5118 0.121*
C4 0.1986 (3) 0.43031 (14) 0.3178 (3) 0.1009 (7)
H4 0.2283 0.3793 0.2915 0.121*
C5 0.0898 (3) 0.47290 (13) 0.2249 (2) 0.0927 (6)
H5 0.0446 0.4524 0.1349 0.111*
C6 0.04751 (19) 0.54945 (11) 0.26945 (18) 0.0744 (5)
C7 0.0640 (2) 0.71089 (15) 0.5249 (3) 0.0871 (6)
H1M −0.025 (3) 0.7513 (14) 0.502 (2) 0.120 (8)*
H2M 0.055 (3) 0.6865 (14) 0.618 (3) 0.127 (8)*
C8 0.2642 (4) 0.80275 (16) 0.4734 (3) 0.0621 (6) 0.731 (3)
C9 0.44199 (18) 0.83291 (9) 0.52164 (16) 0.0637 (4)
C10 0.5617 (4) 0.7648 (2) 0.5330 (4) 0.1025 (11) 0.731 (3)
H10A 0.5324 0.7265 0.6017 0.154* 0.731 (3)
H10B 0.6717 0.7844 0.5650 0.154* 0.731 (3)
H10C 0.5581 0.7399 0.4396 0.154* 0.731 (3)
C11 0.4801 (6) 0.8957 (3) 0.4141 (4) 0.1158 (13) 0.731 (3)
H11A 0.4703 0.8725 0.3187 0.174* 0.731 (3)
H11B 0.5910 0.9151 0.4419 0.174* 0.731 (3)
H11C 0.4031 0.9392 0.4135 0.174* 0.731 (3)
C12 0.4501 (3) 0.87363 (13) 0.6689 (2) 0.0948 (6)
H12A 0.3671 0.9147 0.6633 0.142*
H12B 0.5578 0.8970 0.6956 0.142*
H12C 0.4304 0.8349 0.7407 0.142*
C8A 0.3453 (9) 0.7596 (5) 0.5306 (7) 0.0724 (18) 0.269 (3)
C10A 0.6271 (11) 0.8008 (6) 0.4959 (10) 0.093 (3) 0.269 (3)
H10D 0.6735 0.7684 0.5770 0.139* 0.269 (3)
H10E 0.6983 0.8458 0.4873 0.139* 0.269 (3)
H10F 0.6172 0.7696 0.4085 0.139* 0.269 (3)
C11A 0.3845 (15) 0.8843 (7) 0.3900 (12) 0.111 (3) 0.269 (3)
H11D 0.3597 0.8509 0.3057 0.166* 0.269 (3)
H11E 0.4705 0.9214 0.3756 0.166* 0.269 (3)
H11F 0.2868 0.9132 0.4052 0.166* 0.269 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0696 (14) 0.0778 (14) 0.0794 (12) −0.0172 (11) 0.0009 (9) 0.0118 (10)
O2 0.0858 (12) 0.0929 (13) 0.1025 (14) 0.0056 (10) −0.0178 (10) 0.0215 (11)
O1A 0.062 (4) 0.068 (4) 0.118 (5) −0.009 (3) 0.017 (3) 0.009 (3)
O2A 0.076 (3) 0.093 (4) 0.156 (5) −0.011 (3) −0.008 (3) 0.044 (4)
N1 0.0554 (7) 0.0852 (10) 0.0737 (8) −0.0143 (7) 0.0016 (6) 0.0047 (7)
N2 0.0710 (9) 0.1006 (12) 0.0981 (12) −0.0067 (8) −0.0137 (8) 0.0126 (10)
N3 0.0864 (10) 0.1078 (13) 0.0844 (10) −0.0175 (9) −0.0168 (8) 0.0037 (10)
C1 0.0488 (7) 0.0823 (11) 0.0636 (9) −0.0170 (7) 0.0091 (6) 0.0083 (8)
C2 0.0680 (10) 0.1065 (15) 0.0754 (10) −0.0131 (10) 0.0034 (8) 0.0167 (10)
C3 0.0809 (12) 0.1038 (16) 0.1190 (17) 0.0079 (11) 0.0189 (12) 0.0314 (14)
C4 0.0994 (15) 0.0939 (15) 0.1166 (17) −0.0059 (12) 0.0396 (13) 0.0078 (14)
C5 0.0960 (13) 0.1002 (15) 0.0861 (12) −0.0315 (12) 0.0270 (11) −0.0105 (12)
C6 0.0626 (9) 0.0894 (12) 0.0709 (10) −0.0198 (8) 0.0083 (7) 0.0050 (9)
C7 0.0694 (11) 0.0980 (14) 0.0957 (14) −0.0240 (11) 0.0185 (9) −0.0136 (12)
C8 0.0670 (15) 0.0573 (14) 0.0606 (13) 0.0068 (15) 0.0046 (13) 0.0034 (12)
C9 0.0650 (9) 0.0635 (9) 0.0618 (9) −0.0068 (7) 0.0064 (6) −0.0023 (7)
C10 0.0652 (17) 0.106 (3) 0.134 (3) 0.0108 (16) 0.0070 (16) −0.040 (2)
C11 0.133 (3) 0.126 (3) 0.091 (2) −0.052 (3) 0.025 (2) 0.0067 (19)
C12 0.1017 (14) 0.1004 (14) 0.0820 (12) −0.0055 (11) 0.0122 (10) −0.0232 (11)
C8A 0.060 (4) 0.082 (5) 0.074 (4) −0.001 (4) 0.003 (3) 0.017 (4)
C10A 0.079 (5) 0.093 (6) 0.109 (6) −0.010 (4) 0.024 (4) −0.003 (5)
C11A 0.107 (7) 0.100 (7) 0.114 (7) −0.021 (6) −0.022 (6) 0.040 (5)

Geometric parameters (Å, º)

O1—C8 1.345 (4) C8—C9 1.539 (4)
O1—C7 1.406 (3) C9—C8A 1.466 (8)
O2—C8 1.186 (3) C9—C10 1.493 (3)
O1A—C8A 1.344 (10) C9—C11 1.512 (4)
O1A—C7 1.481 (8) C9—C11A 1.513 (9)
O2A—C8A 1.215 (10) C9—C12 1.522 (2)
N1—N2 1.3594 (19) C9—C10A 1.651 (9)
N1—C1 1.364 (2) C10—H10A 0.9600
N1—C7 1.439 (2) C10—H10B 0.9600
N2—N3 1.298 (2) C10—H10C 0.9600
N3—C6 1.378 (2) C11—H11A 0.9600
C1—C6 1.379 (2) C11—H11B 0.9600
C1—C2 1.392 (2) C11—H11C 0.9600
C2—C3 1.374 (3) C12—H12A 0.9600
C2—H2 0.9300 C12—H12B 0.9600
C3—C4 1.385 (3) C12—H12C 0.9600
C3—H3 0.9300 C10A—H10D 0.9600
C4—C5 1.348 (3) C10A—H10E 0.9600
C4—H4 0.9300 C10A—H10F 0.9600
C5—C6 1.404 (3) C11A—H11D 0.9600
C5—H5 0.9300 C11A—H11E 0.9600
C7—H1M 0.99 (2) C11A—H11F 0.9600
C7—H2M 0.97 (2)
C8—O1—C7 116.6 (3) C11—C9—C11A 30.7 (3)
C8A—O1A—C7 118.3 (8) C8A—C9—C12 106.0 (3)
N2—N1—C1 109.84 (14) C10—C9—C12 109.57 (19)
N2—N1—C7 120.41 (17) C11—C9—C12 107.3 (2)
C1—N1—C7 129.67 (16) C11A—C9—C12 116.2 (5)
N3—N2—N1 108.78 (15) C8A—C9—C8 41.5 (3)
N2—N3—C6 108.23 (14) C10—C9—C8 110.42 (19)
N1—C1—C6 104.36 (14) C11—C9—C8 108.1 (2)
N1—C1—C2 133.91 (16) C11A—C9—C8 77.4 (4)
C6—C1—C2 121.73 (18) C12—C9—C8 108.94 (14)
C3—C2—C1 115.92 (18) C8A—C9—C10A 104.2 (4)
C3—C2—H2 122.0 C10—C9—C10A 33.0 (3)
C1—C2—H2 122.0 C11—C9—C10A 81.4 (4)
C2—C3—C4 122.6 (2) C11A—C9—C10A 104.5 (6)
C2—C3—H3 118.7 C12—C9—C10A 110.8 (4)
C4—C3—H3 118.7 C8—C9—C10A 133.9 (4)
C5—C4—C3 121.5 (2) C9—C10—H10A 109.5
C5—C4—H4 119.2 C9—C10—H10B 109.5
C3—C4—H4 119.2 C9—C10—H10C 109.5
C4—C5—C6 117.38 (19) C9—C11—H11A 109.5
C4—C5—H5 121.3 C9—C11—H11B 109.5
C6—C5—H5 121.3 C9—C11—H11C 109.5
N3—C6—C1 108.78 (17) C9—C12—H12A 109.5
N3—C6—C5 130.39 (18) C9—C12—H12B 109.5
C1—C6—C5 120.82 (18) H12A—C12—H12B 109.5
O1—C7—N1 112.46 (17) C9—C12—H12C 109.5
O1—C7—O1A 33.7 (2) H12A—C12—H12C 109.5
N1—C7—O1A 108.3 (3) H12B—C12—H12C 109.5
O1—C7—H1M 115.9 (14) O2A—C8A—O1A 121.4 (8)
N1—C7—H1M 107.8 (13) O2A—C8A—C9 127.2 (6)
O1A—C7—H1M 87.4 (14) O1A—C8A—C9 111.3 (7)
O1—C7—H2M 99.3 (14) C9—C10A—H10D 109.5
N1—C7—H2M 111.8 (14) C9—C10A—H10E 109.5
O1A—C7—H2M 128.2 (14) H10D—C10A—H10E 109.5
H1M—C7—H2M 109.4 (18) C9—C10A—H10F 109.5
O2—C8—O1 122.3 (4) H10D—C10A—H10F 109.5
O2—C8—C9 125.9 (3) H10E—C10A—H10F 109.5
O1—C8—C9 111.7 (2) C9—C11A—H11D 109.5
C8A—C9—C10 73.1 (3) C9—C11A—H11E 109.5
C8A—C9—C11 141.4 (3) H11D—C11A—H11E 109.5
C10—C9—C11 112.4 (3) C9—C11A—H11F 109.5
C8A—C9—C11A 114.5 (5) H11D—C11A—H11F 109.5
C10—C9—C11A 127.8 (6) H11E—C11A—H11F 109.5
C1—N1—N2—N3 −0.27 (18) C7—O1—C8—O2 −2.4 (4)
C7—N1—N2—N3 −177.51 (15) C7—O1—C8—C9 177.12 (17)
N1—N2—N3—C6 0.17 (19) O2—C8—C9—C8A −157.5 (5)
N2—N1—C1—C6 0.25 (16) O1—C8—C9—C8A 23.0 (4)
C7—N1—C1—C6 177.16 (14) O2—C8—C9—C10 −130.2 (3)
N2—N1—C1—C2 −179.74 (16) O1—C8—C9—C10 50.3 (3)
C7—N1—C1—C2 −2.8 (3) O2—C8—C9—C11 −6.9 (3)
N1—C1—C2—C3 179.88 (16) O1—C8—C9—C11 173.7 (3)
C6—C1—C2—C3 −0.1 (2) O2—C8—C9—C11A −4.3 (6)
C1—C2—C3—C4 −0.5 (3) O1—C8—C9—C11A 176.3 (6)
C2—C3—C4—C5 0.8 (3) O2—C8—C9—C12 109.4 (2)
C3—C4—C5—C6 −0.5 (3) O1—C8—C9—C12 −70.0 (2)
N2—N3—C6—C1 −0.02 (19) O2—C8—C9—C10A −102.3 (5)
N2—N3—C6—C5 179.30 (17) O1—C8—C9—C10A 78.2 (5)
N1—C1—C6—N3 −0.14 (16) C7—O1A—C8A—O2A 10.7 (10)
C2—C1—C6—N3 179.85 (14) C7—O1A—C8A—C9 −166.6 (4)
N1—C1—C6—C5 −179.54 (13) C10—C9—C8A—O2A 17.8 (7)
C2—C1—C6—C5 0.5 (2) C11—C9—C8A—O2A 122.8 (7)
C4—C5—C6—N3 −179.41 (17) C11A—C9—C8A—O2A 142.3 (9)
C4—C5—C6—C1 −0.2 (2) C12—C9—C8A—O2A −88.2 (7)
C8—O1—C7—N1 85.2 (3) C8—C9—C8A—O2A 171.1 (10)
C8—O1—C7—O1A −4.4 (4) C10A—C9—C8A—O2A 28.7 (9)
N2—N1—C7—O1 −118.0 (2) C10—C9—C8A—O1A −165.1 (6)
C1—N1—C7—O1 65.3 (3) C11—C9—C8A—O1A −60.2 (8)
N2—N1—C7—O1A −82.3 (3) C11A—C9—C8A—O1A −40.7 (9)
C1—N1—C7—O1A 101.1 (4) C12—C9—C8A—O1A 88.8 (6)
C8A—O1A—C7—O1 17.8 (4) C8—C9—C8A—O1A −11.8 (4)
C8A—O1A—C7—N1 −85.5 (6) C10A—C9—C8A—O1A −154.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2123).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hang, T. & Ye, Q. (2008). Acta Cryst. E64, m758. [DOI] [PMC free article] [PubMed]
  5. Li, X.-X. & Chen, Z. (2011). Acta Cryst. E67, o140.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wan, J. & Lv, P.-C. (2010). J. Chem. Inf. Comput. Sci. 122, 597–606.
  8. Xu, S. & Shen, Y. (2012). Acta Cryst. E68, m369. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010252/jj2123sup1.cif

e-68-o1066-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010252/jj2123Isup2.hkl

e-68-o1066-Isup2.hkl (108.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010252/jj2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES