Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1072–o1073. doi: 10.1107/S1600536812010483

8-O-Acetyl-8-epi-9-de­oxygoniopypyrone

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, Uma Prawat c, Nawong Boonnak b, Ibrahim Abdul Razak a
PMCID: PMC3344029  PMID: 22589938

Abstract

The title compound (systematic name: 7-oxo-3-phenyl-2,6-dioxabicyclo­[3.3.1]nonan-4-yl acetate), C15H16O5, is a styryllactone derivative which was isolated from Goniothalamus macrophyllus. The mol­ecule has two fused rings consisting of a tetra­hydro-2H-pyran and a lactone ring, with the benzene ring and the acetyl group attached to the tetra­hydro-2H-pyran ring. The tetra­hydro-2H-pyran ring is in a standard chair conformation, whereas the lactone ring is in an envelope conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into sheets parallel to the ac plane. Weak C—H⋯π inter­actions are also observed.

Related literature  

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Goniothamus plants and the bioactivity of styryllactone compounds, see: Abdul-Wahab et al. (2011); Goh et al. (1995); Jiang et al. (2011); Smitinand (2001); Wattanapiromsakul et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1072-scheme1.jpg

Experimental  

Crystal data  

  • C15H16O5

  • M r = 276.28

  • Monoclinic, Inline graphic

  • a = 10.1013 (3) Å

  • b = 5.7749 (2) Å

  • c = 11.2295 (3) Å

  • β = 95.207 (1)°

  • V = 652.36 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.59 × 0.43 × 0.43 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.940, T max = 0.956

  • 24278 measured reflections

  • 3105 independent reflections

  • 3044 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.074

  • S = 1.08

  • 3105 reflections

  • 245 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010483/rz2717sup1.cif

e-68-o1072-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010483/rz2717Isup2.hkl

e-68-o1072-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010483/rz2717Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.988 (15) 2.398 (15) 3.3563 (10) 163.2 (11)
C11—H11⋯O5ii 0.981 (16) 2.531 (16) 3.4986 (12) 168.9 (14)
C15—H15A⋯O5iii 0.99 (2) 2.43 (2) 3.4048 (12) 167 (2)
C2—H2ACg1iv 0.986 (16) 2.714 (15) 3.4619 (9) 133.0 (11)
C12—H12⋯Cg1ii 0.97 (2) 2.947 (18) 3.6566 (10) 130.9 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

SC and NB thank Prince of Songkla University for financial support through the Crystal Materials Research Unit. UP thanks Phuket Rajabhat University for a research grant. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Goniothalamus macrophyllus, a Thai medicinal plant, which is known in Thai as "Ching Dok Diao" belongs to the genus Goniothalamus (Smitinand, 2001). A study of methanolic extracts from the roots and stems of G. macrophyllus shows that the methanolic extracts exhibit good cytotoxicity against breast and lung carcinoma cancer cell lines with IC50 value in range 3.16-5.04 µg/mL (Wattanapiromsakul et al., 2005). In addition, methanolic extract from the leaves of G. umbrosus showed antoxidant, antibacterial and antiviral activities (Abdul-Wahab et al., 2011). The previous reports by Goh et al. (1995) and Jiang et al. (2011) showed that plants in Goniothalamus genus produce styryllactone compounds as major constituents and most of them exhibit potent cytotoxic activity. The above investigations has prompted us to search for cytotoxic components from Goniothalamus plants. Our research on bioactive compounds from G. macrophyllus yields the title compound (I), 8-O-Acetyl-8-epi-9-deoxygoniopypyrone. Herein the crystal structure of (I) was reported.

The molecule of (I) has a bicyclic skeleton (Fig. 1). The tetrahydro-2H-pyran ring (C3–C7/O3) is in a standard chair conformation whereas the lactone ring (C1–C5/O1/O2) adopts an envelope conformation with the puckering C4 atom having a deviation of 0.3806 (9) Å and puckering parameters Q = 0.5424 (9) Å, θ = 49.39 (9)° and φ = 234.03 (12)° (Cremer & Pople, 1975). The benzene ring is attached to the tetrahydro-2H-pyran ring at atom C7. The acetyl group is planar with the r.m.s. deviation of 0.0015 (1) Å for the four non-H atoms (C14/C15/O4/O5). The orientation of the acetyl group is described by the torsion angles C6–O4–C14–C15 = 175.73 (7)° and C6–O4–C14–O5 = -3.72 (12)°. The bond distances in (I) are within normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into sheets parallel to the ac plane by weak C—H···O interactions (Table 1). Weak C—H···π interactions (Table 1) are also observed.

Experimental

The title compound was isolated from the methanolic extract of the G. macrophyllus by repeated column chromatography. Single crystals suitable for X-ray structure determination were obtained as colorless block-shaped crystals by slow evaporation of the solvent at room temperature after several days. M. p. 467–469 K.

Refinement

All H atoms were located in difference maps and refined isotropically. A total of 2473 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis, showing a sheet of molecules parallel to the ac plane. Weak C—H···O interactions are shown as dashed lines.

Crystal data

C15H16O5 F(000) = 292
Mr = 276.28 Dx = 1.406 Mg m3
Monoclinic, P21 Melting point = 467–469 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 10.1013 (3) Å Cell parameters from 3105 reflections
b = 5.7749 (2) Å θ = 1.8–35.0°
c = 11.2295 (3) Å µ = 0.11 mm1
β = 95.207 (1)° T = 100 K
V = 652.36 (3) Å3 Block, colourless
Z = 2 0.59 × 0.43 × 0.43 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3105 independent reflections
Radiation source: sealed tube 3044 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 35.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.940, Tmax = 0.956 k = −9→9
24278 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0379P] where P = (Fo2 + 2Fc2)/3
3105 reflections (Δ/σ)max = 0.001
245 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38218 (6) 0.66249 (12) 0.48754 (5) 0.01367 (11)
O2 0.33277 (7) 0.47946 (14) 0.64890 (6) 0.01839 (13)
O3 0.07398 (6) 0.88291 (11) 0.39772 (5) 0.01228 (10)
O4 0.31111 (6) 0.52721 (11) 0.25383 (5) 0.01305 (11)
O5 0.43199 (7) 0.73105 (15) 0.13134 (6) 0.02024 (13)
C1 0.30578 (8) 0.63582 (15) 0.57915 (7) 0.01278 (13)
C2 0.19378 (8) 0.80331 (15) 0.59457 (7) 0.01390 (13)
H2A 0.2199 (15) 0.887 (3) 0.6695 (13) 0.021 (4)*
H2B 0.1169 (15) 0.716 (4) 0.6069 (13) 0.021 (4)*
C3 0.16268 (8) 0.97661 (14) 0.49384 (7) 0.01248 (12)
H3 0.1154 (14) 1.096 (3) 0.5230 (13) 0.016 (3)*
C4 0.29247 (8) 1.05337 (15) 0.44717 (8) 0.01427 (13)
H4B 0.3513 (16) 1.123 (4) 0.5091 (14) 0.024 (4)*
H4A 0.2808 (16) 1.162 (3) 0.3857 (13) 0.021 (4)*
C5 0.35311 (7) 0.83992 (14) 0.39615 (7) 0.01247 (13)
H5 0.4394 (15) 0.875 (3) 0.3652 (12) 0.015 (3)*
C6 0.25786 (7) 0.73974 (14) 0.29598 (7) 0.01126 (12)
H6 0.2460 (14) 0.846 (3) 0.2307 (12) 0.015 (3)*
C7 0.12169 (7) 0.68308 (14) 0.33982 (6) 0.01064 (12)
H7 0.1354 (14) 0.550 (3) 0.3951 (12) 0.015 (3)*
C8 0.01788 (7) 0.61412 (14) 0.24012 (7) 0.01132 (12)
C9 −0.09128 (8) 0.75649 (15) 0.20889 (7) 0.01458 (13)
H9 −0.0986 (15) 0.900 (3) 0.2471 (13) 0.020 (3)*
C10 −0.19036 (9) 0.68736 (18) 0.12145 (8) 0.01878 (15)
H10 −0.2673 (16) 0.777 (4) 0.1031 (15) 0.027 (4)*
C11 −0.18009 (9) 0.47651 (18) 0.06303 (8) 0.01850 (15)
H11 −0.2496 (16) 0.427 (3) 0.0016 (14) 0.020 (3)*
C12 −0.07031 (9) 0.33484 (17) 0.09223 (8) 0.01722 (14)
H12 −0.0621 (17) 0.185 (4) 0.0544 (15) 0.029 (4)*
C13 0.02716 (8) 0.40161 (15) 0.18141 (7) 0.01443 (13)
H13 0.1009 (16) 0.305 (4) 0.2043 (15) 0.027 (4)*
C14 0.40180 (8) 0.54736 (15) 0.17195 (7) 0.01314 (13)
C15 0.45668 (10) 0.31577 (18) 0.14257 (8) 0.01938 (16)
H15A 0.493 (2) 0.317 (5) 0.0635 (18) 0.049 (6)*
H15B 0.392 (2) 0.209 (5) 0.1444 (19) 0.056 (7)*
H15C 0.522 (2) 0.284 (6) 0.201 (2) 0.064 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0109 (2) 0.0165 (3) 0.0139 (2) 0.0029 (2) 0.00278 (17) 0.0007 (2)
O2 0.0182 (3) 0.0198 (3) 0.0173 (3) 0.0043 (2) 0.0025 (2) 0.0040 (2)
O3 0.0107 (2) 0.0131 (2) 0.0130 (2) 0.00175 (19) 0.00023 (17) −0.00312 (19)
O4 0.0137 (2) 0.0117 (2) 0.0146 (2) 0.00091 (19) 0.00635 (18) −0.00016 (19)
O5 0.0234 (3) 0.0190 (3) 0.0200 (3) 0.0015 (2) 0.0110 (2) 0.0048 (2)
C1 0.0109 (3) 0.0152 (3) 0.0123 (3) 0.0010 (2) 0.0008 (2) −0.0015 (2)
C2 0.0130 (3) 0.0168 (3) 0.0120 (3) 0.0034 (3) 0.0024 (2) −0.0010 (3)
C3 0.0118 (3) 0.0123 (3) 0.0133 (3) 0.0010 (2) 0.0007 (2) −0.0025 (2)
C4 0.0137 (3) 0.0115 (3) 0.0178 (3) −0.0015 (2) 0.0023 (2) −0.0022 (3)
C5 0.0105 (3) 0.0126 (3) 0.0145 (3) −0.0006 (2) 0.0024 (2) 0.0000 (2)
C6 0.0107 (3) 0.0109 (3) 0.0126 (3) 0.0000 (2) 0.0034 (2) −0.0004 (2)
C7 0.0100 (3) 0.0107 (3) 0.0115 (3) 0.0002 (2) 0.0024 (2) −0.0007 (2)
C8 0.0110 (3) 0.0116 (3) 0.0116 (3) −0.0010 (2) 0.0019 (2) −0.0005 (2)
C9 0.0135 (3) 0.0149 (3) 0.0150 (3) 0.0011 (3) −0.0007 (2) −0.0014 (3)
C10 0.0162 (3) 0.0211 (4) 0.0181 (3) 0.0012 (3) −0.0037 (3) −0.0023 (3)
C11 0.0177 (3) 0.0219 (4) 0.0154 (3) −0.0034 (3) −0.0014 (3) −0.0021 (3)
C12 0.0198 (3) 0.0162 (3) 0.0156 (3) −0.0035 (3) 0.0011 (2) −0.0034 (3)
C13 0.0153 (3) 0.0128 (3) 0.0151 (3) −0.0005 (3) 0.0010 (2) −0.0021 (2)
C14 0.0127 (3) 0.0163 (3) 0.0108 (3) 0.0021 (3) 0.0031 (2) −0.0002 (3)
C15 0.0225 (4) 0.0185 (4) 0.0180 (4) 0.0062 (3) 0.0065 (3) −0.0017 (3)

Geometric parameters (Å, º)

O1—C1 1.3498 (10) C6—C7 1.5377 (10)
O1—C5 1.4610 (10) C6—H6 0.955 (16)
O2—C1 1.2101 (11) C7—C8 1.5161 (11)
O3—C7 1.4295 (10) C7—H7 0.989 (16)
O3—C3 1.4440 (10) C8—C9 1.3945 (11)
O4—C14 1.3605 (9) C8—C13 1.4003 (12)
O4—C6 1.4374 (10) C9—C10 1.3953 (12)
O5—C14 1.2048 (11) C9—H9 0.938 (18)
C1—C2 1.5103 (11) C10—C11 1.3915 (14)
C2—C3 1.5216 (12) C10—H10 0.942 (19)
C2—H2A 0.986 (16) C11—C12 1.3930 (13)
C2—H2B 0.946 (17) C11—H11 0.981 (16)
C3—C4 1.5214 (11) C12—C13 1.3935 (12)
C3—H3 0.914 (17) C12—H12 0.97 (2)
C4—C5 1.5122 (12) C13—H13 0.946 (18)
C4—H4B 0.962 (17) C14—C15 1.4960 (13)
C4—H4A 0.932 (17) C15—H15A 0.99 (2)
C5—C6 1.5262 (11) C15—H15B 0.90 (3)
C5—H5 0.989 (15) C15—H15C 0.90 (3)
C1—O1—C5 121.54 (6) C7—C6—H6 109.2 (8)
C7—O3—C3 115.50 (6) O3—C7—C8 107.98 (6)
C14—O4—C6 116.40 (6) O3—C7—C6 108.79 (6)
O2—C1—O1 117.88 (7) C8—C7—C6 113.48 (6)
O2—C1—C2 122.06 (7) O3—C7—H7 112.0 (9)
O1—C1—C2 120.03 (7) C8—C7—H7 107.9 (9)
C1—C2—C3 116.25 (6) C6—C7—H7 106.7 (8)
C1—C2—H2A 105.5 (10) C9—C8—C13 118.91 (7)
C3—C2—H2A 109.5 (11) C9—C8—C7 120.60 (7)
C1—C2—H2B 108.0 (11) C13—C8—C7 120.43 (7)
C3—C2—H2B 110.0 (10) C8—C9—C10 120.57 (8)
H2A—C2—H2B 107.2 (13) C8—C9—H9 119.9 (10)
O3—C3—C4 110.32 (6) C10—C9—H9 119.5 (10)
O3—C3—C2 112.43 (7) C11—C10—C9 120.18 (8)
C4—C3—C2 108.75 (6) C11—C10—H10 118.3 (12)
O3—C3—H3 103.9 (9) C9—C10—H10 121.4 (12)
C4—C3—H3 113.5 (10) C10—C11—C12 119.66 (8)
C2—C3—H3 107.9 (10) C10—C11—H11 120.5 (11)
C5—C4—C3 106.52 (7) C12—C11—H11 119.8 (11)
C5—C4—H4B 111.8 (11) C11—C12—C13 120.14 (8)
C3—C4—H4B 111.7 (9) C11—C12—H12 121.2 (10)
C5—C4—H4A 107.2 (11) C13—C12—H12 118.5 (10)
C3—C4—H4A 113.3 (10) C12—C13—C8 120.51 (8)
H4B—C4—H4A 106.3 (16) C12—C13—H13 121.4 (12)
O1—C5—C4 111.60 (6) C8—C13—H13 118.1 (12)
O1—C5—C6 108.96 (6) O5—C14—O4 122.70 (8)
C4—C5—C6 109.77 (6) O5—C14—C15 126.31 (7)
O1—C5—H5 105.4 (9) O4—C14—C15 111.00 (7)
C4—C5—H5 111.4 (10) C14—C15—H15A 111.3 (17)
C6—C5—H5 109.6 (8) C14—C15—H15B 108.9 (17)
O4—C6—C5 109.68 (6) H15A—C15—H15B 111 (2)
O4—C6—C7 107.22 (6) C14—C15—H15C 106 (2)
C5—C6—C7 111.54 (6) H15A—C15—H15C 110.6 (19)
O4—C6—H6 108.6 (9) H15B—C15—H15C 109 (2)
C5—C6—H6 110.4 (10)
C5—O1—C1—O2 177.18 (7) C3—O3—C7—C8 −178.45 (6)
C5—O1—C1—C2 −4.92 (11) C3—O3—C7—C6 −54.89 (8)
O2—C1—C2—C3 −174.31 (8) O4—C6—C7—O3 171.98 (6)
O1—C1—C2—C3 7.88 (11) C5—C6—C7—O3 51.89 (8)
C7—O3—C3—C4 61.21 (8) O4—C6—C7—C8 −67.80 (8)
C7—O3—C3—C2 −60.37 (8) C5—C6—C7—C8 172.11 (6)
C1—C2—C3—O3 84.88 (8) O3—C7—C8—C9 8.26 (10)
C1—C2—C3—C4 −37.59 (9) C6—C7—C8—C9 −112.42 (8)
O3—C3—C4—C5 −60.54 (8) O3—C7—C8—C13 −168.99 (7)
C2—C3—C4—C5 63.20 (8) C6—C7—C8—C13 70.34 (9)
C1—O1—C5—C4 32.61 (10) C13—C8—C9—C10 0.66 (12)
C1—O1—C5—C6 −88.77 (8) C7—C8—C9—C10 −176.62 (8)
C3—C4—C5—O1 −61.42 (8) C8—C9—C10—C11 −1.02 (13)
C3—C4—C5—C6 59.49 (8) C9—C10—C11—C12 −0.05 (14)
C14—O4—C6—C5 −83.04 (8) C10—C11—C12—C13 1.47 (14)
C14—O4—C6—C7 155.69 (6) C11—C12—C13—C8 −1.83 (13)
O1—C5—C6—O4 −53.13 (7) C9—C8—C13—C12 0.76 (12)
C4—C5—C6—O4 −175.62 (6) C7—C8—C13—C12 178.05 (8)
O1—C5—C6—C7 65.50 (8) C6—O4—C14—O5 −3.72 (12)
C4—C5—C6—C7 −56.99 (8) C6—O4—C14—C15 175.73 (7)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.988 (15) 2.398 (15) 3.3563 (10) 163.2 (11)
C11—H11···O5ii 0.981 (16) 2.531 (16) 3.4986 (12) 168.9 (14)
C15—H15A···O5iii 0.99 (2) 2.43 (2) 3.4048 (12) 167 (2)
C2—H2A···Cg1iv 0.986 (16) 2.714 (15) 3.4619 (9) 133.0 (11)
C12—H12···Cg1ii 0.97 (2) 2.947 (18) 3.6566 (10) 130.9 (14)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2717).

References

  1. Abdul-Wahab, N.-Z., Shahar, S., Abdullah-Sani, H., Pihie, A. H. L. & Ibrahim, N. (2011). Afr. J. Microbiol. Res. 5, 3138–3143.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Goh, S. H., Ee, G. C. L., Chuah, C. H. & Wei, C. (1995). Aust. J. Chem. 48, 199–205.
  7. Jiang, M.-M., Feng, Y.-F., Gao, H., Zhang, X., Tang, J.-S. & Yao, X.-S. (2011). Fitoterapia, 82, 524–527. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smitinand, T. (2001). Thai Plant Names, pp. 260–261. Bangkok: Prachachon Publisher.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wattanapiromsakul, C., Wangsintaweekul, B., Sangprapan, P., Itharat, A. & Keawpradub, N. (2005). Songklanakarin J. Sci. Technol 27, 480–487.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010483/rz2717sup1.cif

e-68-o1072-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010483/rz2717Isup2.hkl

e-68-o1072-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010483/rz2717Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES