Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1077. doi: 10.1107/S1600536812010744

1-[Bis(4-fluoro­phen­yl)meth­yl]-4-[2-(2-methyl­phen­oxy)eth­yl]piperazine

Zhao-Hui Dai a, Yan Zhong b, Bin Wu a,*
PMCID: PMC3344032  PMID: 22589941

Abstract

In the title mol­ecule, C26H28F2N2O, the piperazine ring adopts a chair conformation, with the N-bonded substituents in equatorial orientations. The dihedral angle between the fluoro­benzene rings is 69.10 (15).

Related literature  

For related structures and background to 1-(bis­(4-fluoro­phen­yl)meth­yl)piperazine derivatives, see: Wu et al. (2008); Dayananda et al. (2012); Zhong et al. (2011).graphic file with name e-68-o1077-scheme1.jpg

Experimental  

Crystal data  

  • C26H28F2N2O

  • M r = 422.50

  • Monoclinic, Inline graphic

  • a = 10.021 (2) Å

  • b = 15.203 (3) Å

  • c = 15.868 (3) Å

  • β = 100.54 (3)°

  • V = 2376.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonious CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.976, T max = 0.992

  • 4618 measured reflections

  • 4355 independent reflections

  • 2404 reflections with I > 2σ(I)

  • R int = 0.040

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.191

  • S = 1.03

  • 4355 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010744/hb6677sup1.cif

e-68-o1077-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010744/hb6677Isup2.hkl

e-68-o1077-Isup2.hkl (213.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010744/hb6677Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010538).

supplementary crystallographic information

Comment

As a continuation of our study of 1-(bis(4-fluorophenyl)methyl)piperazine derivatives (Wu et al., 2008; Zhong et al., 2011), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Zhong et al., 2011). The piperazine ring adopts a chair conformation with puchering parameters Q = 0.591 (3), Theta = 1.7 (3), Phi = 333 (6). The dihedral angle between the fluorobenzene rings is 69.10 (15).

Experimental

A mixture of 1-(2-bromoethoxy)-2-methylbenzene (10 mmol), 1-(bis(4-fluorophenyl)methyl)piperazine (15 mmol) and triethylamine (5 ml) were mixed along with 40 ml acetonitrile and then refluxed for about 24 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was completed, the solvent was removed under reduced pressure. The resultant mixture was cooled. The solid, 1-(bis(4-fluorophenyl)methyl)-4-(2-(2-methylphenoxy)ethyl)piperazine obtained was filtered and was recrystallized from ethanol. The colorless blocks of the title compound were grown in ethanol by a slow evaporation at room temperature.

Refinement

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids for non-H drawn at 70% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound.

Crystal data

C26H28F2N2O F(000) = 896
Mr = 422.50 Dx = 1.181 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.021 (2) Å Cell parameters from 25 reflections
b = 15.203 (3) Å θ = 10–13°
c = 15.868 (3) Å µ = 0.08 mm1
β = 100.54 (3)° T = 293 K
V = 2376.7 (8) Å3 Block, colorless
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonious CAD-4 diffractometer 2404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
Graphite monochromator θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→12
Absorption correction: ψ scan (North et al., 1968) k = 0→18
Tmin = 0.976, Tmax = 0.992 l = −19→18
4618 measured reflections 3 standard reflections every 200 reflections
4355 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4355 reflections Δρmax = 0.16 e Å3
281 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.7306 (2) 1.14171 (14) 0.42351 (12) 0.0810 (7)
N1 0.7468 (2) 0.84241 (14) 0.22937 (13) 0.0581 (6)
F1 0.8567 (2) 0.43605 (12) 0.19160 (11) 0.1000 (7)
C1 0.7161 (3) 0.65379 (19) 0.18894 (18) 0.0643 (8)
H1A 0.6365 0.6807 0.1978 0.077*
N2 0.7479 (2) 0.95279 (15) 0.37811 (14) 0.0686 (7)
F2 0.5198 (2) 0.89761 (15) −0.16486 (11) 0.1113 (7)
C2 0.7277 (3) 0.5639 (2) 0.19660 (18) 0.0721 (9)
H2A 0.6576 0.5304 0.2111 0.087*
C3 0.8442 (4) 0.5253 (2) 0.18250 (17) 0.0708 (8)
C4 0.9473 (3) 0.5721 (2) 0.1593 (2) 0.0756 (9)
H4A 1.0247 0.5441 0.1482 0.091*
C5 0.9339 (3) 0.6618 (2) 0.15294 (18) 0.0681 (8)
H5A 1.0042 0.6945 0.1376 0.082*
C6 0.8195 (3) 0.70541 (18) 0.16848 (15) 0.0552 (7)
C7 0.8082 (3) 0.80441 (18) 0.16018 (16) 0.0561 (7)
H7A 0.9001 0.8284 0.1652 0.067*
C8 0.7296 (3) 0.82920 (17) 0.07345 (16) 0.0546 (7)
C9 0.5904 (3) 0.8252 (3) 0.05368 (19) 0.0904 (11)
H9A 0.5427 0.8064 0.0954 0.108*
C10 0.5197 (3) 0.8480 (3) −0.0254 (2) 0.1014 (13)
H10A 0.4253 0.8455 −0.0369 0.122*
C11 0.5892 (3) 0.8743 (2) −0.08663 (18) 0.0724 (9)
C12 0.7263 (3) 0.87824 (19) −0.07114 (18) 0.0685 (8)
H12A 0.7727 0.8961 −0.1138 0.082*
C13 0.7958 (3) 0.85550 (17) 0.00850 (17) 0.0597 (7)
H13A 0.8901 0.8578 0.0191 0.072*
C14 0.7401 (3) 0.93889 (19) 0.22319 (18) 0.0713 (8)
H14A 0.6883 0.9558 0.1678 0.086*
H14B 0.8311 0.9626 0.2278 0.086*
C15 0.6743 (3) 0.9766 (2) 0.29339 (17) 0.0745 (9)
H15A 0.6709 1.0402 0.2882 0.089*
H15B 0.5818 0.9552 0.2867 0.089*
C16 0.7577 (4) 0.85698 (18) 0.38358 (18) 0.0739 (9)
H16A 0.6674 0.8320 0.3782 0.089*
H16B 0.8091 0.8403 0.4391 0.089*
C17 0.8258 (3) 0.82076 (18) 0.31398 (16) 0.0643 (8)
H17A 0.9163 0.8454 0.3195 0.077*
H17B 0.8342 0.7574 0.3199 0.077*
C18 0.6835 (4) 0.9899 (2) 0.44565 (19) 0.0815 (9)
H18A 0.6856 0.9462 0.4904 0.098*
H18B 0.5891 1.0019 0.4219 0.098*
C19 0.7477 (4) 1.07238 (19) 0.48507 (19) 0.0823 (10)
H19A 0.7063 1.0889 0.5335 0.099*
H19B 0.8436 1.0624 0.5059 0.099*
C20 0.7721 (3) 1.2243 (2) 0.4525 (2) 0.0683 (8)
C21 0.7494 (3) 1.2900 (2) 0.3902 (2) 0.0737 (9)
C22 0.7859 (4) 1.3752 (2) 0.4162 (3) 0.0940 (11)
H22A 0.7715 1.4205 0.3762 0.113*
C23 0.8430 (4) 1.3944 (2) 0.5001 (3) 0.0995 (12)
H23A 0.8660 1.4521 0.5160 0.119*
C24 0.8657 (3) 1.3293 (2) 0.5596 (2) 0.0859 (10)
H24A 0.9042 1.3423 0.6161 0.103*
C25 0.8314 (3) 1.2432 (2) 0.5358 (2) 0.0778 (9)
H25A 0.8484 1.1982 0.5761 0.093*
C26 0.6884 (4) 1.2689 (3) 0.2986 (2) 0.1020 (12)
H26A 0.6800 1.3219 0.2651 0.153*
H26B 0.6003 1.2432 0.2962 0.153*
H26C 0.7459 1.2281 0.2759 0.153*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.1193 (18) 0.0623 (13) 0.0637 (13) 0.0113 (12) 0.0232 (12) 0.0065 (10)
N1 0.0634 (14) 0.0592 (15) 0.0511 (13) 0.0048 (11) 0.0091 (11) 0.0049 (10)
F1 0.1421 (18) 0.0689 (13) 0.0948 (14) 0.0127 (11) 0.0372 (13) 0.0029 (10)
C1 0.0565 (17) 0.066 (2) 0.0750 (19) −0.0016 (15) 0.0229 (15) −0.0084 (15)
N2 0.0968 (18) 0.0572 (15) 0.0523 (13) 0.0053 (13) 0.0147 (13) 0.0038 (11)
F2 0.1128 (16) 0.1552 (19) 0.0604 (11) 0.0259 (14) 0.0010 (11) 0.0235 (12)
C2 0.083 (2) 0.068 (2) 0.070 (2) −0.0132 (17) 0.0276 (17) −0.0105 (15)
C3 0.100 (2) 0.0559 (19) 0.0590 (18) 0.0070 (18) 0.0206 (17) 0.0017 (14)
C4 0.076 (2) 0.075 (2) 0.079 (2) 0.0236 (17) 0.0225 (17) 0.0128 (17)
C5 0.0527 (17) 0.077 (2) 0.077 (2) 0.0093 (15) 0.0180 (15) 0.0144 (16)
C6 0.0532 (16) 0.0625 (18) 0.0507 (15) 0.0007 (14) 0.0118 (13) −0.0001 (13)
C7 0.0465 (15) 0.0654 (18) 0.0574 (16) −0.0024 (13) 0.0121 (13) 0.0024 (13)
C8 0.0532 (16) 0.0569 (17) 0.0560 (16) 0.0008 (13) 0.0158 (13) 0.0014 (13)
C9 0.0542 (19) 0.158 (3) 0.0602 (19) −0.005 (2) 0.0144 (15) 0.022 (2)
C10 0.0563 (19) 0.179 (4) 0.067 (2) 0.005 (2) 0.0075 (17) 0.024 (2)
C11 0.081 (2) 0.085 (2) 0.0493 (17) 0.0114 (18) 0.0069 (16) 0.0079 (15)
C12 0.085 (2) 0.069 (2) 0.0567 (18) −0.0005 (16) 0.0274 (16) 0.0079 (14)
C13 0.0613 (17) 0.0570 (17) 0.0652 (18) −0.0030 (13) 0.0235 (15) 0.0035 (14)
C14 0.091 (2) 0.063 (2) 0.0593 (17) 0.0127 (16) 0.0123 (16) 0.0119 (14)
C15 0.099 (2) 0.0620 (18) 0.0628 (19) 0.0173 (17) 0.0166 (17) 0.0043 (15)
C16 0.107 (3) 0.0568 (18) 0.0571 (17) 0.0023 (16) 0.0118 (17) 0.0059 (14)
C17 0.082 (2) 0.0520 (16) 0.0561 (17) 0.0041 (14) 0.0047 (15) 0.0035 (13)
C18 0.119 (3) 0.069 (2) 0.0622 (18) 0.0002 (19) 0.0302 (18) 0.0009 (15)
C19 0.128 (3) 0.062 (2) 0.0609 (18) 0.0072 (18) 0.0258 (19) 0.0022 (15)
C20 0.071 (2) 0.0590 (19) 0.081 (2) 0.0123 (15) 0.0305 (17) 0.0012 (17)
C21 0.0648 (19) 0.073 (2) 0.089 (2) 0.0119 (16) 0.0293 (17) 0.0168 (18)
C22 0.083 (2) 0.072 (3) 0.134 (3) 0.0067 (19) 0.038 (2) 0.030 (2)
C23 0.078 (2) 0.066 (2) 0.157 (4) 0.0027 (19) 0.030 (3) −0.001 (3)
C24 0.067 (2) 0.077 (3) 0.114 (3) 0.0067 (17) 0.0155 (19) −0.011 (2)
C25 0.082 (2) 0.061 (2) 0.092 (2) 0.0117 (16) 0.0218 (19) 0.0016 (17)
C26 0.107 (3) 0.109 (3) 0.096 (3) 0.018 (2) 0.034 (2) 0.037 (2)

Geometric parameters (Å, º)

O—C20 1.375 (3) C12—H12A 0.9300
O—C19 1.426 (3) C13—H13A 0.9300
N1—C17 1.466 (3) C14—C15 1.508 (4)
N1—C14 1.471 (3) C14—H14A 0.9700
N1—C7 1.472 (3) C14—H14B 0.9700
F1—C3 1.367 (3) C15—H15A 0.9700
C1—C2 1.375 (4) C15—H15B 0.9700
C1—C6 1.385 (4) C16—C17 1.505 (4)
C1—H1A 0.9300 C16—H16A 0.9700
N2—C15 1.456 (3) C16—H16B 0.9700
N2—C18 1.462 (4) C17—H17A 0.9700
N2—C16 1.461 (3) C17—H17B 0.9700
F2—C11 1.355 (3) C18—C19 1.493 (4)
C2—C3 1.362 (4) C18—H18A 0.9700
C2—H2A 0.9300 C18—H18B 0.9700
C3—C4 1.360 (4) C19—H19A 0.9700
C4—C5 1.373 (4) C19—H19B 0.9700
C4—H4A 0.9300 C20—C25 1.376 (4)
C5—C6 1.385 (4) C20—C21 1.394 (4)
C5—H5A 0.9300 C21—C22 1.389 (5)
C6—C7 1.513 (4) C21—C26 1.505 (5)
C7—C8 1.503 (3) C22—C23 1.380 (5)
C7—H7A 0.9800 C22—H22A 0.9300
C8—C9 1.374 (4) C23—C24 1.357 (5)
C8—C13 1.383 (3) C23—H23A 0.9300
C9—C10 1.368 (4) C24—C25 1.388 (4)
C9—H9A 0.9300 C24—H24A 0.9300
C10—C11 1.356 (4) C25—H25A 0.9300
C10—H10A 0.9300 C26—H26A 0.9600
C11—C12 1.352 (4) C26—H26B 0.9600
C12—C13 1.371 (4) C26—H26C 0.9600
C20—O—C19 117.0 (2) N2—C15—C14 111.8 (2)
C17—N1—C14 107.2 (2) N2—C15—H15A 109.3
C17—N1—C7 111.4 (2) C14—C15—H15A 109.3
C14—N1—C7 111.2 (2) N2—C15—H15B 109.3
C2—C1—C6 122.0 (3) C14—C15—H15B 109.3
C2—C1—H1A 119.0 H15A—C15—H15B 107.9
C6—C1—H1A 119.0 N2—C16—C17 110.8 (2)
C15—N2—C18 111.3 (2) N2—C16—H16A 109.5
C15—N2—C16 108.7 (2) C17—C16—H16A 109.5
C18—N2—C16 112.0 (2) N2—C16—H16B 109.5
C3—C2—C1 118.4 (3) C17—C16—H16B 109.5
C3—C2—H2A 120.8 H16A—C16—H16B 108.1
C1—C2—H2A 120.8 N1—C17—C16 110.4 (2)
C4—C3—C2 122.4 (3) N1—C17—H17A 109.6
C4—C3—F1 119.2 (3) C16—C17—H17A 109.6
C2—C3—F1 118.4 (3) N1—C17—H17B 109.6
C3—C4—C5 118.2 (3) C16—C17—H17B 109.6
C3—C4—H4A 120.9 H17A—C17—H17B 108.1
C5—C4—H4A 120.9 N2—C18—C19 114.7 (3)
C4—C5—C6 122.3 (3) N2—C18—H18A 108.6
C4—C5—H5A 118.8 C19—C18—H18A 108.6
C6—C5—H5A 118.8 N2—C18—H18B 108.6
C5—C6—C1 116.7 (3) C19—C18—H18B 108.6
C5—C6—C7 120.8 (2) H18A—C18—H18B 107.6
C1—C6—C7 122.5 (2) O—C19—C18 110.2 (3)
N1—C7—C8 111.3 (2) O—C19—H19A 109.6
N1—C7—C6 111.1 (2) C18—C19—H19A 109.6
C8—C7—C6 110.3 (2) O—C19—H19B 109.6
N1—C7—H7A 108.0 C18—C19—H19B 109.6
C8—C7—H7A 108.0 H19A—C19—H19B 108.1
C6—C7—H7A 108.0 O—C20—C25 124.2 (3)
C9—C8—C13 116.6 (3) O—C20—C21 114.6 (3)
C9—C8—C7 122.6 (2) C25—C20—C21 121.2 (3)
C13—C8—C7 120.8 (2) C22—C21—C20 117.2 (3)
C10—C9—C8 122.2 (3) C22—C21—C26 121.7 (3)
C10—C9—H9A 118.9 C20—C21—C26 121.1 (3)
C8—C9—H9A 118.9 C23—C22—C21 121.6 (3)
C11—C10—C9 118.9 (3) C23—C22—H22A 119.2
C11—C10—H10A 120.5 C21—C22—H22A 119.2
C9—C10—H10A 120.5 C24—C23—C22 120.3 (4)
C12—C11—F2 119.3 (3) C24—C23—H23A 119.9
C12—C11—C10 121.4 (3) C22—C23—H23A 119.9
F2—C11—C10 119.3 (3) C23—C24—C25 119.8 (4)
C11—C12—C13 119.0 (3) C23—C24—H24A 120.1
C11—C12—H12A 120.5 C25—C24—H24A 120.1
C13—C12—H12A 120.5 C20—C25—C24 120.0 (3)
C12—C13—C8 121.9 (3) C20—C25—H25A 120.0
C12—C13—H13A 119.1 C24—C25—H25A 120.0
C8—C13—H13A 119.1 C21—C26—H26A 109.5
N1—C14—C15 110.5 (2) C21—C26—H26B 109.5
N1—C14—H14A 109.5 H26A—C26—H26B 109.5
C15—C14—H14A 109.5 C21—C26—H26C 109.5
N1—C14—H14B 109.5 H26A—C26—H26C 109.5
C15—C14—H14B 109.5 H26B—C26—H26C 109.5
H14A—C14—H14B 108.1
C6—C1—C2—C3 −0.8 (4) C9—C8—C13—C12 1.3 (4)
C1—C2—C3—C4 −1.5 (5) C7—C8—C13—C12 179.9 (2)
C1—C2—C3—F1 178.9 (2) C17—N1—C14—C15 −59.2 (3)
C2—C3—C4—C5 2.2 (5) C7—N1—C14—C15 178.8 (2)
F1—C3—C4—C5 −178.2 (3) C18—N2—C15—C14 179.8 (3)
C3—C4—C5—C6 −0.5 (5) C16—N2—C15—C14 −56.4 (3)
C4—C5—C6—C1 −1.6 (4) N1—C14—C15—N2 58.9 (3)
C4—C5—C6—C7 −179.6 (3) C15—N2—C16—C17 57.3 (3)
C2—C1—C6—C5 2.3 (4) C18—N2—C16—C17 −179.3 (3)
C2—C1—C6—C7 −179.8 (2) C14—N1—C17—C16 60.6 (3)
C17—N1—C7—C8 −178.1 (2) C7—N1—C17—C16 −177.5 (2)
C14—N1—C7—C8 −58.6 (3) N2—C16—C17—N1 −61.3 (3)
C17—N1—C7—C6 58.5 (3) C15—N2—C18—C19 −99.0 (3)
C14—N1—C7—C6 178.0 (2) C16—N2—C18—C19 139.1 (3)
C5—C6—C7—N1 −139.5 (2) C20—O—C19—C18 173.6 (3)
C1—C6—C7—N1 42.6 (3) N2—C18—C19—O 66.0 (4)
C5—C6—C7—C8 96.5 (3) C19—O—C20—C25 1.7 (4)
C1—C6—C7—C8 −81.3 (3) C19—O—C20—C21 −178.2 (3)
N1—C7—C8—C9 −45.1 (4) O—C20—C21—C22 178.3 (3)
C6—C7—C8—C9 78.7 (3) C25—C20—C21—C22 −1.6 (4)
N1—C7—C8—C13 136.4 (2) O—C20—C21—C26 −1.9 (4)
C6—C7—C8—C13 −99.7 (3) C25—C20—C21—C26 178.2 (3)
C13—C8—C9—C10 −1.5 (5) C20—C21—C22—C23 0.4 (5)
C7—C8—C9—C10 179.9 (3) C26—C21—C22—C23 −179.4 (3)
C8—C9—C10—C11 0.9 (6) C21—C22—C23—C24 0.4 (5)
C9—C10—C11—C12 0.1 (6) C22—C23—C24—C25 0.0 (5)
C9—C10—C11—F2 −179.5 (3) O—C20—C25—C24 −177.8 (3)
F2—C11—C12—C13 179.3 (3) C21—C20—C25—C24 2.1 (5)
C10—C11—C12—C13 −0.3 (5) C23—C24—C25—C20 −1.2 (5)
C11—C12—C13—C8 −0.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6677).

References

  1. Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o968. [DOI] [PMC free article] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.
  7. Zhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3342. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010744/hb6677sup1.cif

e-68-o1077-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010744/hb6677Isup2.hkl

e-68-o1077-Isup2.hkl (213.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010744/hb6677Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES