Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1080. doi: 10.1107/S1600536812010732

(E)-Benzaldehyde O-{[3-(pyridin-3-yl)isoxazol-5-yl]meth­yl}oxime

Rodolfo Moreno-Fuquen a,*, Alix Elena Loaiza b, John Diaz-Velandia b, Alan R Kennedy c, Catriona A Morrison c
PMCID: PMC3344035  PMID: 22589944

Abstract

The asymmetric unit of the title compound, C16H13N3O2, contains two independent mol­ecules in which the pyridine and benzene rings form dihedral angles of 81.7 (2) and 79.8 (2)°, indicating the twist in the mol­ecules. In the crystal, weak C—H⋯N inter­actions link mol­ecules into chains along [100].

Related literature  

For organic synthesis of isoxazole systems, see: Giomi et al. (2008); Chukanov & Reznikov (2011). For the biological activity of isoxazole systems, see: Meyers et al. (2011); Basappa et al. (2003); Lee et al. (2009); Talley et al. (2000); Farrerons et al. (2003); Edgard et al. (2004); For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).graphic file with name e-68-o1080-scheme1.jpg

Experimental  

Crystal data  

  • C16H13N3O2

  • M r = 279.29

  • Orthorhombic, Inline graphic

  • a = 19.364 (12) Å

  • b = 4.459 (3) Å

  • c = 31.775 (19) Å

  • V = 2744 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.01 × 0.01 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • 17573 measured reflections

  • 4762 independent reflections

  • 3544 reflections with I > 2σ(I)

  • R int = 0.086

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.136

  • S = 0.99

  • 4762 reflections

  • 379 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010732/vm2159sup1.cif

e-68-o1080-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010732/vm2159Isup2.hkl

e-68-o1080-Isup2.hkl (233.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010732/vm2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N3i 0.95 2.43 3.374 (5) 174
C10—H10⋯N6ii 0.95 2.49 3.443 (5) 179

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, and AEL thanks Universidad Javeriana, Colombia, for partial financial support. Thanks are due to the National Crystallography Service at the University of Southampton for the data collection.

supplementary crystallographic information

Comment

The isoxazoles are five-membered heterocyclic systems with one oxygen atom and one nitrogen atom at adjacent positions. These compounds are used as intermediates in organic synthesis due to their easy transformation into important groups such as enamino ketones, enoximes, 1,3-dicarbonyl compounds, γ-amino alcohols, and β-hydroxy nitriles (Giomi et al., 2008; Chukanov & Reznikov, 2011).

They also have been widely used in the synthesis of nucleosides, alkaloids and other natural compounds. Many derivatives exhibit interesting applications in various fields such as agriculture, industry, and medicine. The wide spectrum of biological activities characteristic of these systems, comprises analgesic (Meyers et al., 2011), antifungal (Basappa et al., 2003), antiviral (Lee et al., 2009), anti-inflammatory (Talley et al., 2000), and antiobesity (Giomi et al., 2008) activities.

In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as isoxazoles and oximes. The (E)-benzaldehyde O-(3-(pyridin-3-yl)isoxazol-5-yl)methyl oxime, (I), is an isoxazole analogue exhibiting important antibiotic (Farrerons et al., 2003) and immunomodulator properties (Edgard et al., 2004). On the other hand, the oxime function is an important pharmacophore group present in a wide variety of biologically active compounds, such as 3-oxiconazole and cefuroxime. Compound I was synthesized via 1,3-dipolar cycloaddition of an alkyne and a nitrile oxide obtained by treatment of (E)-nicotinaldehyde oxime with NaOCl. The reaction proceeded with high regioselectivity affording only the 5-substituted isomer in 45% yield. The molecular structure of I is shown in Fig. 1. The asymmetric unit of (I) contains two independent molecules (1) and (2). In both molecules, the isoxazole and pyridine rings are almost coplanar (r.m.s. deviation of all non-hydrogen atoms = 0.0044 Å). The dihedral angles between the mean planes defined by isoxazole and pyridine rings are 3.0 (3)° in molecule 1 and 5.8 (3)° in molecule 2. The pyridine and benzene rings form a dihedral angle of 81.7 (2)° in molecule 1 and 79.8 (2)° in molecule 2 indicating the twist in the molecules. The torsion angles of C8—O1—N1—C1 in (1) and C24—O3—N4—C17 in (2) are 176.2 (3) and -173.8 (3)° respectively and the least-squares fit of C2 C1 N1 O1 C8 C9 plane in (1) and C18 C17 N4 O3 C24 C25 plane in (2) show a r.m.s deviation of fitted atoms of 0.2117 and 0.2090 Å respectively, indicating the similar conformation of both molecules. The crystal packing is stabilized by weak C—H···N interactions (see Table 1, Nardelli, 1995). The molecules 1 and 2, are intertwined forming C(6) (Etter, 1990) chains of molecules along [100], see Fig. 2.

Experimental

A stirred solution of (E)-benzaldehyde O-prop-2-ynyl oxime (318 mg, 2 mmol) and (E)- nicotinaldehyde oxime (122 mg, 1 mmol) in dichloromethane (4 ml) was placed on an ice bath during 5 minutes and then NaOCl in aqueous solution 5.25% (3 ml, 2.5 mmol) was added. The mixture was allowed to react for 30 minutes. After this period the phases were separated and the aqueous phase was extracted with AcOEt. The combined organic phases were dried with anhydrous Na2SO4, filtered and concentrated under low pressure. Purification of the crude mixture by flash column chromatography with 25% (v/v) AcOEt/hexane yielded a white solid (126 mg, 45% yield, mp 322 (1) K).

(E)-benzaldehyde O-(3-(pyridin-3-yl)isoxazol-5-yl)methyl oxime 1H NMR (300 MHz) δ, 9.04 (d, 1H), 8.70 (dd, 1H), 8.20 (ddd, 1H), 8.19 (s, 1H), 7.63–7.60 (m, 2H), 7.46–7.38 (m, 4H), 6.69 (t, 1H), 5.34 (d, 2H). 13C-NMR δ, 170.25, 159.10, 150.75, 150.45, 147.74, 134.31, 131.45, 130.37, 128.78, 127.30, 123.86, 101.24, 66.66. MS—EI M+ 279.1, 159.1 (100%).

Refinement

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H= 0.99 Å for methylene] and refined with Uiso(H) 1.2 and 1.5 times Ueq of the parent atom, respectively.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of chains along [100]. Symmetry code: (i) x - 1/2,-y + 3/2,z; (ii) x,y + 1,z.

Crystal data

C16H13N3O2 Dx = 1.352 Mg m3
Mr = 279.29 Melting point: 322(1) K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2n Cell parameters from 4687 reflections
a = 19.364 (12) Å θ = 2.5–25.1°
b = 4.459 (3) Å µ = 0.09 mm1
c = 31.775 (19) Å T = 100 K
V = 2744 (3) Å3 Needle, colourless
Z = 8 0.40 × 0.01 × 0.01 mm
F(000) = 1168

Data collection

Rigaku Saturn724+ diffractometer 3544 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.086
Confocal monochromator θmax = 25.0°, θmin = 3.8°
Detector resolution: 28.5714 pixels mm-1 h = −22→20
profile data from ω–scans k = −4→5
17573 measured reflections l = −37→37
4762 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3
4762 reflections (Δ/σ)max < 0.001
379 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42469 (12) 1.0263 (6) −0.10487 (8) 0.0291 (6)
O2 0.54055 (14) 0.8039 (6) −0.04845 (8) 0.0312 (7)
O3 0.66365 (12) 1.0298 (6) 0.27422 (8) 0.0289 (6)
O4 0.78145 (14) 0.8318 (6) 0.21677 (8) 0.0341 (7)
N1 0.36765 (16) 0.8518 (7) −0.08969 (10) 0.0272 (8)
N2 0.56013 (16) 0.6236 (8) −0.01381 (9) 0.0310 (8)
N3 0.57737 (19) 0.2015 (7) 0.10467 (11) 0.0317 (8)
N4 0.60742 (16) 0.8498 (7) 0.25889 (10) 0.0283 (8)
N5 0.80334 (18) 0.6730 (8) 0.18076 (10) 0.0335 (9)
N6 0.82896 (17) 0.3085 (9) 0.05894 (11) 0.0363 (9)
C1 0.3367 (2) 0.7268 (9) −0.12076 (13) 0.0251 (9)
H1 0.3528 0.7638 −0.1485 0.030*
C2 0.27783 (18) 0.5302 (8) −0.11453 (11) 0.0236 (9)
C3 0.25108 (19) 0.3751 (9) −0.14916 (12) 0.0268 (9)
H3 0.2716 0.4005 −0.1761 0.032*
C4 0.1950 (2) 0.1849 (9) −0.14465 (14) 0.0335 (10)
H4 0.1774 0.0803 −0.1684 0.040*
C5 0.1645 (2) 0.1470 (10) −0.10568 (13) 0.0350 (10)
H5 0.1262 0.0156 −0.1027 0.042*
C6 0.1894 (2) 0.2993 (10) −0.07096 (13) 0.0328 (11)
H6 0.1679 0.2754 −0.0443 0.039*
C7 0.2467 (2) 0.4896 (9) −0.07537 (12) 0.0304 (9)
H7 0.2644 0.5917 −0.0515 0.037*
C8 0.4554 (2) 1.1802 (9) −0.06927 (12) 0.0290 (10)
H8A 0.4201 1.3090 −0.0558 0.035*
H8B 0.4932 1.3113 −0.0794 0.035*
C9 0.48330 (17) 0.9676 (8) −0.03760 (11) 0.0222 (8)
C10 0.4652 (2) 0.9032 (9) 0.00232 (11) 0.0282 (9)
H10 0.4280 0.9851 0.0180 0.034*
C11 0.51395 (19) 0.6865 (9) 0.01587 (12) 0.0226 (9)
C12 0.51848 (18) 0.5373 (9) 0.05737 (12) 0.0261 (9)
C13 0.47154 (19) 0.6129 (10) 0.08933 (12) 0.0303 (10)
H13 0.4355 0.7529 0.0842 0.036*
C14 0.47866 (19) 0.4803 (10) 0.12829 (13) 0.0345 (10)
H14 0.4474 0.5266 0.1504 0.041*
C15 0.5324 (2) 0.2773 (10) 0.13475 (13) 0.0347 (10)
H15 0.5373 0.1889 0.1618 0.042*
C16 0.5701 (2) 0.3278 (9) 0.06674 (12) 0.0294 (9)
H16 0.6014 0.2725 0.0451 0.035*
C17 0.5772 (2) 0.7288 (9) 0.29060 (12) 0.0248 (10)
H17 0.5929 0.7721 0.3183 0.030*
C18 0.51797 (18) 0.5220 (8) 0.28453 (11) 0.0240 (9)
C19 0.4886 (2) 0.4702 (9) 0.24531 (12) 0.0306 (10)
H19 0.5060 0.5698 0.2211 0.037*
C20 0.4334 (2) 0.2713 (9) 0.24168 (13) 0.0311 (10)
H20 0.4138 0.2329 0.2148 0.037*
C21 0.40688 (19) 0.1297 (9) 0.27672 (12) 0.0318 (10)
H21 0.3689 −0.0038 0.2740 0.038*
C22 0.4360 (2) 0.1830 (10) 0.31618 (12) 0.0295 (10)
H22 0.4181 0.0857 0.3404 0.035*
C23 0.4910 (2) 0.3773 (9) 0.31983 (13) 0.0291 (9)
H23 0.5109 0.4131 0.3467 0.035*
C24 0.6926 (2) 1.1897 (9) 0.23951 (12) 0.0296 (10)
H24A 0.7290 1.3259 0.2501 0.036*
H24B 0.6561 1.3147 0.2265 0.036*
C25 0.72282 (18) 0.9900 (9) 0.20662 (12) 0.0253 (9)
C26 0.7059 (2) 0.9344 (9) 0.16578 (12) 0.0279 (9)
H26 0.6675 1.0106 0.1505 0.034*
C27 0.7574 (2) 0.7403 (9) 0.15124 (13) 0.0246 (9)
C28 0.76501 (19) 0.6134 (9) 0.10804 (12) 0.0266 (9)
C29 0.7201 (2) 0.7057 (10) 0.07652 (12) 0.0319 (10)
H29 0.6832 0.8394 0.0824 0.038*
C30 0.7309 (2) 0.5954 (10) 0.03557 (13) 0.0376 (10)
H30 0.7012 0.6526 0.0132 0.045*
C31 0.7852 (2) 0.4038 (11) 0.02849 (13) 0.0397 (11)
H31 0.7924 0.3338 0.0006 0.048*
C32 0.8173 (2) 0.4122 (10) 0.09790 (12) 0.0326 (10)
H32 0.8465 0.3441 0.1199 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0330 (15) 0.0331 (17) 0.0211 (14) −0.0047 (12) −0.0017 (11) 0.0032 (12)
O2 0.0334 (16) 0.0400 (18) 0.0201 (16) 0.0057 (13) 0.0006 (13) 0.0018 (12)
O3 0.0346 (15) 0.0343 (18) 0.0179 (14) −0.0090 (12) 0.0007 (11) −0.0008 (12)
O4 0.0330 (17) 0.045 (2) 0.0239 (16) −0.0007 (14) −0.0060 (12) −0.0055 (13)
N1 0.0316 (19) 0.028 (2) 0.0220 (18) 0.0003 (15) −0.0010 (14) 0.0018 (14)
N2 0.033 (2) 0.041 (2) 0.0196 (18) 0.0037 (16) −0.0030 (15) 0.0085 (15)
N3 0.036 (2) 0.038 (2) 0.0212 (19) 0.0052 (16) −0.0026 (15) 0.0035 (16)
N4 0.0289 (18) 0.030 (2) 0.0260 (19) −0.0003 (15) 0.0003 (15) −0.0065 (16)
N5 0.034 (2) 0.046 (2) 0.0210 (18) 0.0077 (15) −0.0015 (14) −0.0038 (16)
N6 0.0274 (19) 0.053 (3) 0.029 (2) 0.0053 (16) 0.0036 (16) −0.0066 (17)
C1 0.032 (2) 0.023 (2) 0.020 (2) 0.0047 (17) −0.0016 (17) 0.0012 (16)
C2 0.027 (2) 0.020 (2) 0.024 (2) 0.0047 (16) −0.0036 (16) 0.0051 (16)
C3 0.031 (2) 0.028 (2) 0.021 (2) 0.0078 (17) 0.0020 (17) 0.0032 (18)
C4 0.037 (3) 0.028 (3) 0.035 (3) −0.0016 (19) −0.010 (2) 0.004 (2)
C5 0.028 (2) 0.036 (3) 0.041 (3) −0.0002 (18) 0.000 (2) 0.008 (2)
C6 0.029 (2) 0.039 (3) 0.031 (3) 0.006 (2) 0.003 (2) 0.0066 (19)
C7 0.037 (2) 0.031 (3) 0.023 (2) 0.0008 (18) −0.0017 (17) 0.0052 (18)
C8 0.037 (2) 0.031 (3) 0.019 (2) −0.0045 (19) −0.0066 (17) 0.0017 (17)
C9 0.023 (2) 0.020 (2) 0.024 (2) −0.0016 (16) −0.0039 (16) −0.0039 (15)
C10 0.028 (2) 0.039 (3) 0.018 (2) 0.0017 (18) 0.0031 (16) −0.0046 (17)
C11 0.024 (2) 0.026 (2) 0.018 (2) −0.0064 (16) 0.0026 (16) 0.0011 (16)
C12 0.025 (2) 0.032 (2) 0.0208 (19) −0.0007 (17) −0.0051 (16) −0.0038 (17)
C13 0.029 (2) 0.038 (3) 0.024 (2) 0.0004 (18) 0.0002 (17) 0.0034 (18)
C14 0.033 (2) 0.046 (3) 0.024 (2) −0.001 (2) −0.0008 (18) −0.0052 (18)
C15 0.041 (2) 0.044 (3) 0.019 (2) −0.002 (2) 0.0017 (18) 0.0037 (18)
C16 0.026 (2) 0.035 (3) 0.027 (2) −0.0025 (18) −0.0054 (16) 0.0008 (18)
C17 0.036 (2) 0.025 (2) 0.014 (2) 0.0029 (17) 0.0004 (17) −0.0042 (16)
C18 0.033 (2) 0.015 (2) 0.024 (2) 0.0027 (16) 0.0024 (17) −0.0062 (15)
C19 0.033 (2) 0.033 (3) 0.025 (2) 0.0061 (19) 0.0018 (18) 0.0039 (18)
C20 0.035 (2) 0.034 (3) 0.025 (2) −0.0041 (19) −0.0078 (19) −0.0029 (17)
C21 0.027 (2) 0.036 (3) 0.032 (2) 0.0031 (18) 0.003 (2) −0.005 (2)
C22 0.027 (2) 0.040 (3) 0.022 (2) 0.0090 (18) 0.0093 (18) 0.0007 (18)
C23 0.034 (2) 0.029 (3) 0.024 (2) 0.0014 (18) 0.0052 (18) −0.0033 (18)
C24 0.035 (2) 0.030 (2) 0.024 (2) −0.0016 (18) 0.0057 (18) 0.0065 (18)
C25 0.031 (2) 0.021 (2) 0.024 (2) −0.0023 (16) 0.0039 (16) 0.0039 (16)
C26 0.028 (2) 0.030 (2) 0.026 (2) 0.0018 (18) −0.0011 (16) 0.0017 (17)
C27 0.028 (2) 0.025 (2) 0.020 (2) −0.0051 (17) 0.0043 (17) 0.0035 (15)
C28 0.027 (2) 0.028 (2) 0.025 (2) −0.0042 (17) 0.0024 (16) 0.0010 (17)
C29 0.029 (2) 0.044 (3) 0.023 (2) 0.0012 (19) 0.0037 (17) −0.0007 (19)
C30 0.037 (2) 0.050 (3) 0.025 (2) −0.002 (2) −0.0027 (19) −0.004 (2)
C31 0.033 (2) 0.062 (3) 0.025 (2) −0.002 (2) 0.0015 (19) −0.008 (2)
C32 0.032 (2) 0.042 (3) 0.023 (2) −0.002 (2) 0.0023 (17) 0.0002 (19)

Geometric parameters (Å, º)

O1—N1 1.435 (4) C12—C16 1.400 (5)
O1—C8 1.451 (5) C12—C13 1.404 (5)
O2—C9 1.371 (4) C13—C14 1.379 (5)
O2—N2 1.415 (4) C13—H13 0.9500
O3—C24 1.428 (5) C14—C15 1.395 (6)
O3—N4 1.438 (4) C14—H14 0.9500
O4—C25 1.375 (4) C15—H15 0.9500
O4—N5 1.411 (4) C16—H16 0.9500
N1—C1 1.282 (5) C17—C18 1.484 (5)
N2—C11 1.330 (5) C17—H17 0.9500
N3—C15 1.336 (5) C18—C19 1.390 (5)
N3—C16 1.338 (5) C18—C23 1.395 (5)
N4—C17 1.284 (5) C19—C20 1.394 (6)
N5—C27 1.327 (5) C19—H19 0.9500
N6—C32 1.341 (5) C20—C21 1.379 (6)
N6—C31 1.355 (5) C20—H20 0.9500
C1—C2 1.452 (5) C21—C22 1.396 (5)
C1—H1 0.9500 C21—H21 0.9500
C2—C7 1.394 (5) C22—C23 1.378 (6)
C2—C3 1.399 (5) C22—H22 0.9500
C3—C4 1.386 (6) C23—H23 0.9500
C3—H3 0.9500 C24—C25 1.493 (5)
C4—C5 1.382 (6) C24—H24A 0.9900
C4—H4 0.9500 C24—H24B 0.9900
C5—C6 1.383 (6) C25—C26 1.361 (5)
C5—H5 0.9500 C26—C27 1.400 (6)
C6—C7 1.404 (6) C26—H26 0.9500
C6—H6 0.9500 C27—C28 1.492 (6)
C7—H7 0.9500 C28—C29 1.388 (5)
C8—C9 1.484 (5) C28—C32 1.391 (6)
C8—H8A 0.9900 C29—C30 1.407 (5)
C8—H8B 0.9900 C29—H29 0.9500
C9—C10 1.347 (5) C30—C31 1.373 (5)
C10—C11 1.417 (5) C30—H30 0.9500
C10—H10 0.9500 C31—H31 0.9500
C11—C12 1.479 (5) C32—H32 0.9500
N1—O1—C8 108.1 (3) N3—C15—H15 118.5
C9—O2—N2 108.9 (3) C14—C15—H15 118.5
C24—O3—N4 108.3 (3) N3—C16—C12 123.2 (4)
C25—O4—N5 108.4 (3) N3—C16—H16 118.4
C1—N1—O1 109.6 (3) C12—C16—H16 118.4
C11—N2—O2 104.6 (3) N4—C17—C18 120.8 (3)
C15—N3—C16 118.0 (4) N4—C17—H17 119.6
C17—N4—O3 108.3 (3) C18—C17—H17 119.6
C27—N5—O4 105.0 (3) C19—C18—C23 119.4 (3)
C32—N6—C31 116.5 (4) C19—C18—C17 122.4 (3)
N1—C1—C2 121.6 (4) C23—C18—C17 118.2 (3)
N1—C1—H1 119.2 C18—C19—C20 119.6 (4)
C2—C1—H1 119.2 C18—C19—H19 120.2
C7—C2—C3 118.5 (3) C20—C19—H19 120.2
C7—C2—C1 122.7 (4) C21—C20—C19 120.7 (4)
C3—C2—C1 118.8 (3) C21—C20—H20 119.7
C4—C3—C2 120.7 (4) C19—C20—H20 119.7
C4—C3—H3 119.6 C20—C21—C22 119.8 (4)
C2—C3—H3 119.6 C20—C21—H21 120.1
C5—C4—C3 120.2 (4) C22—C21—H21 120.1
C5—C4—H4 119.9 C23—C22—C21 119.7 (4)
C3—C4—H4 119.9 C23—C22—H22 120.2
C4—C5—C6 120.4 (4) C21—C22—H22 120.2
C4—C5—H5 119.8 C22—C23—C18 120.8 (4)
C6—C5—H5 119.8 C22—C23—H23 119.6
C5—C6—C7 119.5 (4) C18—C23—H23 119.6
C5—C6—H6 120.2 O3—C24—C25 113.4 (3)
C7—C6—H6 120.2 O3—C24—H24A 108.9
C2—C7—C6 120.6 (4) C25—C24—H24A 108.9
C2—C7—H7 119.7 O3—C24—H24B 108.9
C6—C7—H7 119.7 C25—C24—H24B 108.9
O1—C8—C9 112.1 (3) H24A—C24—H24B 107.7
O1—C8—H8A 109.2 C26—C25—O4 109.2 (3)
C9—C8—H8A 109.2 C26—C25—C24 132.9 (4)
O1—C8—H8B 109.2 O4—C25—C24 117.8 (3)
C9—C8—H8B 109.2 C25—C26—C27 104.8 (3)
H8A—C8—H8B 107.9 C25—C26—H26 127.6
C10—C9—O2 109.5 (3) C27—C26—H26 127.6
C10—C9—C8 132.9 (4) N5—C27—C26 112.6 (4)
O2—C9—C8 117.6 (3) N5—C27—C28 119.9 (4)
C9—C10—C11 105.0 (3) C26—C27—C28 127.5 (4)
C9—C10—H10 127.5 C29—C28—C32 118.7 (4)
C11—C10—H10 127.5 C29—C28—C27 119.3 (4)
N2—C11—C10 112.1 (3) C32—C28—C27 122.0 (3)
N2—C11—C12 119.8 (3) C28—C29—C30 118.0 (4)
C10—C11—C12 128.1 (3) C28—C29—H29 121.0
C16—C12—C13 117.9 (4) C30—C29—H29 121.0
C16—C12—C11 122.2 (3) C31—C30—C29 118.9 (4)
C13—C12—C11 119.9 (3) C31—C30—H30 120.5
C14—C13—C12 118.8 (4) C29—C30—H30 120.5
C14—C13—H13 120.6 N6—C31—C30 123.8 (4)
C12—C13—H13 120.6 N6—C31—H31 118.1
C13—C14—C15 119.0 (4) C30—C31—H31 118.1
C13—C14—H14 120.5 N6—C32—C28 124.0 (4)
C15—C14—H14 120.5 N6—C32—H32 118.0
N3—C15—C14 123.0 (4) C28—C32—H32 118.0
C8—O1—N1—C1 176.2 (3) C13—C12—C16—N3 −1.3 (6)
C9—O2—N2—C11 0.2 (4) C11—C12—C16—N3 176.5 (4)
C24—O3—N4—C17 −173.8 (3) O3—N4—C17—C18 −178.3 (3)
C25—O4—N5—C27 −0.4 (4) N4—C17—C18—C19 −5.9 (6)
O1—N1—C1—C2 178.5 (3) N4—C17—C18—C23 174.6 (4)
N1—C1—C2—C7 7.0 (6) C23—C18—C19—C20 −1.0 (6)
N1—C1—C2—C3 −173.1 (3) C17—C18—C19—C20 179.5 (4)
C7—C2—C3—C4 −0.1 (5) C18—C19—C20—C21 1.2 (6)
C1—C2—C3—C4 179.9 (4) C19—C20—C21—C22 −0.8 (6)
C2—C3—C4—C5 0.3 (6) C20—C21—C22—C23 0.1 (6)
C3—C4—C5—C6 0.3 (6) C21—C22—C23—C18 0.1 (6)
C4—C5—C6—C7 −1.0 (6) C19—C18—C23—C22 0.4 (6)
C3—C2—C7—C6 −0.6 (5) C17—C18—C23—C22 179.9 (4)
C1—C2—C7—C6 179.4 (4) N4—O3—C24—C25 −62.8 (4)
C5—C6—C7—C2 1.1 (6) N5—O4—C25—C26 1.0 (4)
N1—O1—C8—C9 62.2 (4) N5—O4—C25—C24 −176.6 (3)
N2—O2—C9—C10 0.3 (4) O3—C24—C25—C26 114.7 (5)
N2—O2—C9—C8 178.1 (3) O3—C24—C25—O4 −68.4 (4)
O1—C8—C9—C10 −113.6 (5) O4—C25—C26—C27 −1.1 (4)
O1—C8—C9—O2 69.3 (4) C24—C25—C26—C27 175.9 (4)
O2—C9—C10—C11 −0.7 (4) O4—N5—C27—C26 −0.3 (5)
C8—C9—C10—C11 −178.0 (4) O4—N5—C27—C28 179.1 (3)
O2—N2—C11—C10 −0.6 (4) C25—C26—C27—N5 0.9 (5)
O2—N2—C11—C12 −179.8 (3) C25—C26—C27—C28 −178.5 (4)
C9—C10—C11—N2 0.8 (5) N5—C27—C28—C29 −174.5 (4)
C9—C10—C11—C12 179.9 (4) C26—C27—C28—C29 4.8 (6)
N2—C11—C12—C16 −0.4 (6) N5—C27—C28—C32 3.3 (6)
C10—C11—C12—C16 −179.4 (4) C26—C27—C28—C32 −177.4 (4)
N2—C11—C12—C13 177.3 (3) C32—C28—C29—C30 −1.4 (6)
C10—C11—C12—C13 −1.7 (6) C27—C28—C29—C30 176.4 (4)
C16—C12—C13—C14 0.5 (6) C28—C29—C30—C31 −0.3 (6)
C11—C12—C13—C14 −177.2 (3) C32—N6—C31—C30 −0.1 (7)
C12—C13—C14—C15 0.4 (6) C29—C30—C31—N6 1.1 (7)
C16—N3—C15—C14 0.1 (6) C31—N6—C32—C28 −1.8 (6)
C13—C14—C15—N3 −0.8 (6) C29—C28—C32—N6 2.6 (6)
C15—N3—C16—C12 0.9 (6) C27—C28—C32—N6 −175.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C26—H26···N3i 0.95 2.43 3.374 (5) 174
C10—H10···N6ii 0.95 2.49 3.443 (5) 179

Symmetry codes: (i) x, y+1, z; (ii) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2159).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Basappa, M. P., Sadashiva, K., Mantelingu, S., Nanjunda, S. & Rangappa, K. S. (2003). Bioorg. Med. Chem. Lett. 11, 4539–4544. [DOI] [PubMed]
  3. Chukanov, N. V. & Reznikov, V. A. (2011). Russ. Chem. Bull. 60, 379–399.
  4. Edgard, E., Andres-Gil, J., Dirk, D., Franciscus, D., Matezans-Ballesteros, M. & Alvarez, R. (2004). US Patent 2004-0019059 A1.
  5. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrerons, C., Lagunas, C. & Fernandez, A. (2003). Spanish Patent ES 2 180 456 A1.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Giomi, D., Cordero, F. M., Pisaneschi, F. & Brandi, A. (2008). Comprehensive Heterocyclic Chemistry III, Vol. 4, pp. 365–486. Oxford: Elsevier.
  10. Lee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Meyers, M. J., Long, S. A., Pelc, M. J., Wang, J. L., Bowen, S. J., Schweitzer, B. A., Wilcox, M. V., McDonald, J., Smith, S. E., Foltin, S., Rumsey, J., Yang, Y., Walker, M. C., Kamtekar, S., Beidler, D. & Thorarensen, A. (2011). Bioorg. Med. Chem. Lett. 21, 6545–6553. [DOI] [PubMed]
  13. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  14. Rigaku (2011). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Talley, J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y., Zweifel, B. S. & Seibert, K. (2000). J. Med. Chem. 43, 775–777. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010732/vm2159sup1.cif

e-68-o1080-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010732/vm2159Isup2.hkl

e-68-o1080-Isup2.hkl (233.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010732/vm2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES