Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1082. doi: 10.1107/S1600536812010677

2,3,5,6-Tetra­fluoro-1,4-bis­(trimethyl­sil­yl)benzene

Maik Finze a,*, Guido J Reiss b, Hermann-Josef Frohn c
PMCID: PMC3344037  PMID: 22589946

Abstract

The asymmetric unit of the title compound, C12H18F4Si2, contains two independent mol­ecules, both lying on inversion centers. The Carene—Si distances are significantly longer than in the analogous non-fluorinated compound. The packing of the mol­ecules results in a herringbone motif in the ac plane.

Related literature  

For the synthesis and chemistry of 1,4-(Me3Si)2—C6F4, see: Fearon & Gilman (1967); Tamborski & Soloski (1969); Fields et al. (1970); Sartori & Frohn (1974); Bardin et al. (1991); Frohn et al. (1998); Kashiwabara & Tanaka (2006). For related structures see: Rehm et al. (1999); Sekiguchi et al. (2000); Haberecht et al. (2002, 2004); Krumm et al. (2005); Hanamoto et al. (2006).graphic file with name e-68-o1082-scheme1.jpg

Experimental  

Crystal data  

  • C12H18F4Si2

  • M r = 294.44

  • Monoclinic, Inline graphic

  • a = 19.8389 (4) Å

  • b = 6.35013 (10) Å

  • c = 12.3827 (2) Å

  • β = 107.407 (2)°

  • V = 1488.53 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 199 K

  • 0.25 × 0.22 × 0.20 mm

Data collection  

  • Oxford Xcalibur Eos diffractometer

  • 8888 measured reflections

  • 2626 independent reflections

  • 2496 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.068

  • S = 1.09

  • 2626 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010677/mw2055sup1.cif

e-68-o1082-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010677/mw2055Isup2.hkl

e-68-o1082-Isup2.hkl (129KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010677/mw2055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Si1—C2 1.9101 (15)
Si2—C8 1.9077 (15)

Acknowledgments

This publication was funded by the German Research Foundation (DFG) and the University of Würzburg under the funding programme Open Access Publishing.

supplementary crystallographic information

Comment

The first synthesis of the title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene, 1,4-(Me3Si)2—C6F4, was reported in 1967 starting from 1,2,4,5-tetrafluorobenzene, n-butyl lithium, and trimethylsilyl chloride (Fearon & Gilman 1967). Later, the compound was observed as a by-product in related reactions, improved methods for its selective synthesis were published and some reactions of 1,4-(Me3Si)2—C6F4 were described (Tamborski & Soloski, 1969; Fields et al. 1970; Sartori & Frohn, 1974; Bardin et al. 1991; Frohn et al. 1998; Kashiwabara & Tanaka, 2006). The 1,4-(Me3Si)2—C6F4 employed in the present study was prepared by a different route using poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, and trimethylsilyl chloride as starting materials.

The title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene (Figure 1) crystallizes in the monoclinic space group P21/c with two independent molecules each of which is located on a center of symmetry. Both crystallographically independent molecules display very similar geometric parameters. The C–C, Cmethyl–Si and C–F bond lengths are in the expected range. Both Carene–Si distances are slightly longer than those found for the non-fluorinated analogue 1,4-(Me3Si)2—C6H4 [d(Carene–Si) = 1.8817 (12) Å] (Haberecht et al. 2004) and other non-fluorinated Me3Si–Carene compounds (Haberecht et al. 2004; Rehm et al. 1999). In contrast, for related 1-trimethylsilyl-2,3,5,6-tetrafluoro benzene fragments similar values were reported (Sekiguchi et al. 2000, Krumm et al. 2005). In the closely related compound 1,2,4-(iPr3Si)3—C6F3 (Hanamoto et al. 2006) the d(Carene–Si) of the iPr3Si groups in ortho positions [d(C–Si) = 1.937 (2), 1.934 (2)] are significantly longer than those in the title compound whereas the third Carene–Si distance [d(C–Si) = 1.914 (2) Å], which corresponds to the iPr3Si group that has two F atoms in the ortho positions, is close to the values determined for 1,4-(Me3Si)2—C6F4.

The 1,4-bis(trimethylsilyl)tetrafluorobenzene molecules are arranged in the ac plane to form a herringbone structure (Figure 2). The trimethylsilyl groups are interlinked by van der Waals interactions with methyl groups of neighboring molecules.

Experimental

The starting material poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, was synthesized by thermolysis of Cd(1,4-O2C—C6F4) at 270 °C under vacuum according to a literature procedure (Sartori & Frohn, 1974).

7.1 g (27.3 mmol) poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, was charged into a Duran-glass Carius tube inside a glove box. 6.55 g (60.3 mmol) freshly distilled (CH3)3SiCl was added under protection of dry nitrogen. The tube was sealed and shaken and heated inside an oven. The temperature was increased stepwise over 30 h to 222°C without visual change of the reaction components. Further heating from 230 to 250°C over 26 h was accompanied by a reduction of the liquid phase and a change of the color to light grey. The Carius tube was cooled stepwise to -78°C before opening under nitrogen protection. CAUTION: Handling of the sealed Carius tube should proceed behind a large protection screen with long-sleeve leather gloves. At 0°C 3.4 g (31.3 mmol) of (CH3)3SiCl were recovered by condensation under high-vacuum. The dark grey solid residue, which contained the co-product CdCl2, was extracted with boiling petrol ether (60–70°C fraction). After removing the solvent from the extract a slightly brownish oil remained which was sublimed under high vacuum. The colorless crystals were collected on a water cooled sublimation finger. Yield ca 80%; mp 46°C [31–32°C isomeric mixture (Fields et al., 1970)]; NMR (20% CCl4 solution): 1H -0.39 p.p.m., 19F -124.2 p.p.m.; MS (EI, 73 eV) M+. 294, the fragment ions 81 (CH3SiF2), 77 ((CH3)2SiF), and 73 ((CH3)3Si) possessed higher intensities than the parent ion; IR (neat): 2946 (m), 2889 (m), 1575 (w), 1487 (w), 1400 (st, b), 1343 (w), 1334 (w), 1286 (w), 1240 (st), 1214 (st), 1183 (m), 1035 (w), 921 (st), 830 (st, b), 748 (st), 684 (m), 613 (m), 566 (w), 432 (w).

Refinement

Methyl H atoms were identified in a difference map, idealized and refined using rigid groups allowed to rotate about the Si—C bond (AFIX 137 option of the SHELXL97 program). All Uiso(H) values were refined unrestrictedly.

Figures

Fig. 1.

Fig. 1.

: The two crystallographically independent molecules of the title compound (H-atoms are drawn with arbitrary radii; ' = -x, 1 - y, -z; '' = 1 - x, 2 - y, 1 - z).

Fig. 2.

Fig. 2.

: Molecular packing of the title compound viewed parallel to the b axis, showing the herringbone type motif (ball and stick type model with arbitrary atom radii).

Crystal data

C12H18F4Si2 F(000) = 616
Mr = 294.44 Dx = 1.314 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8162 reflections
a = 19.8389 (4) Å θ = 3.1–28.3°
b = 6.35013 (10) Å µ = 0.26 mm1
c = 12.3827 (2) Å T = 199 K
β = 107.407 (2)° Block, colourless
V = 1488.53 (5) Å3 0.25 × 0.22 × 0.20 mm
Z = 4

Data collection

Oxford Xcalibur Eos diffractometer 2496 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.015
Equatorial mounted graphite monochromator θmax = 25.0°, θmin = 3.2°
Detector resolution: 16.2711 pixels mm-1 h = −22→23
ω–scan k = −7→7
8888 measured reflections l = −14→12
2626 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.0425P] where P = (Fo2 + 2Fc2)/3
2626 reflections (Δ/σ)max < 0.001
187 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.12486 (2) 0.23395 (7) 0.19607 (3) 0.01427 (11)
C1 −0.01679 (8) 0.3116 (2) 0.03692 (12) 0.0145 (3)
F1 −0.03838 (4) 0.12566 (13) 0.06873 (7) 0.0203 (2)
C2 0.05291 (8) 0.3765 (2) 0.08187 (12) 0.0139 (3)
C3 0.06680 (7) 0.5691 (2) 0.04012 (12) 0.0141 (3)
F3 0.13382 (4) 0.64624 (14) 0.07568 (7) 0.0199 (2)
C4 0.08544 (8) 0.0143 (3) 0.25580 (13) 0.0224 (3)
H4A 0.0484 0.0679 0.2834 0.034 (5)*
H4B 0.1212 −0.0499 0.3170 0.037 (5)*
H4C 0.0663 −0.0886 0.1979 0.037 (5)*
C5 0.19335 (8) 0.1412 (3) 0.13233 (13) 0.0190 (3)
H5A 0.2119 0.2592 0.1019 0.033 (5)*
H5B 0.1727 0.0427 0.0728 0.030 (5)*
H5C 0.2309 0.0738 0.1894 0.037 (5)*
C6 0.16406 (9) 0.4291 (3) 0.30949 (13) 0.0241 (4)
H6A 0.1858 0.5406 0.2794 0.044 (6)*
H6B 0.1990 0.3611 0.3703 0.045 (6)*
H6C 0.1276 0.4864 0.3373 0.042 (6)*
Si2 0.35988 (2) 0.79571 (7) 0.56124 (3) 0.01519 (11)
C7 0.50606 (8) 0.8812 (2) 0.59251 (12) 0.0156 (3)
F7 0.51552 (5) 0.76178 (15) 0.68697 (7) 0.0227 (2)
C8 0.43772 (8) 0.9180 (2) 0.52347 (12) 0.0147 (3)
C9 0.43451 (7) 1.0409 (2) 0.42942 (12) 0.0152 (3)
F9 0.37103 (4) 1.08933 (14) 0.35422 (7) 0.0203 (2)
C10 0.36292 (9) 0.8818 (3) 0.70638 (13) 0.0235 (4)
H10A 0.3604 1.0326 0.7086 0.038 (6)*
H10B 0.4063 0.8348 0.7594 0.032 (5)*
H10C 0.3237 0.8222 0.7259 0.039 (6)*
C11 0.27524 (8) 0.8855 (3) 0.46024 (13) 0.0214 (3)
H11A 0.2727 0.8394 0.3853 0.031 (5)*
H11B 0.2729 1.0364 0.4617 0.030 (5)*
H11C 0.2365 0.8269 0.4816 0.034 (5)*
C12 0.36891 (9) 0.5045 (3) 0.55206 (14) 0.0235 (4)
H12A 0.3661 0.4662 0.4758 0.042 (6)*
H12B 0.3316 0.4365 0.5734 0.049 (6)*
H12C 0.4137 0.4610 0.6022 0.036 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0148 (2) 0.0168 (2) 0.0121 (2) 0.00203 (16) 0.00533 (16) 0.00124 (16)
C1 0.0186 (7) 0.0128 (7) 0.0152 (7) −0.0018 (6) 0.0099 (6) 0.0001 (6)
F1 0.0192 (5) 0.0163 (5) 0.0258 (5) −0.0034 (4) 0.0073 (4) 0.0062 (4)
C2 0.0158 (7) 0.0160 (7) 0.0121 (7) 0.0017 (6) 0.0074 (6) −0.0015 (6)
C3 0.0114 (7) 0.0177 (7) 0.0144 (7) −0.0023 (6) 0.0057 (6) −0.0030 (6)
F3 0.0124 (4) 0.0215 (5) 0.0247 (5) −0.0043 (4) 0.0041 (4) 0.0018 (4)
C4 0.0210 (8) 0.0264 (9) 0.0213 (8) 0.0043 (7) 0.0089 (6) 0.0093 (7)
C5 0.0189 (8) 0.0216 (8) 0.0186 (7) 0.0019 (6) 0.0085 (6) 0.0008 (6)
C6 0.0262 (9) 0.0271 (9) 0.0162 (8) 0.0050 (7) 0.0019 (7) −0.0033 (7)
Si2 0.0138 (2) 0.0159 (2) 0.0169 (2) −0.00165 (16) 0.00616 (16) −0.00042 (16)
C7 0.0187 (8) 0.0144 (7) 0.0135 (7) 0.0006 (6) 0.0045 (6) 0.0025 (6)
F7 0.0190 (5) 0.0288 (5) 0.0191 (5) −0.0001 (4) 0.0039 (4) 0.0117 (4)
C8 0.0156 (7) 0.0134 (7) 0.0156 (7) −0.0005 (6) 0.0055 (6) −0.0020 (6)
C9 0.0122 (7) 0.0159 (7) 0.0153 (7) 0.0020 (6) 0.0006 (6) −0.0009 (6)
F9 0.0124 (4) 0.0260 (5) 0.0192 (4) 0.0008 (4) 0.0000 (3) 0.0064 (4)
C10 0.0260 (9) 0.0264 (9) 0.0209 (8) −0.0044 (7) 0.0116 (7) −0.0012 (7)
C11 0.0157 (8) 0.0254 (9) 0.0240 (8) −0.0011 (6) 0.0075 (6) −0.0006 (7)
C12 0.0237 (8) 0.0185 (8) 0.0299 (9) −0.0019 (7) 0.0105 (7) 0.0003 (7)

Geometric parameters (Å, º)

Si1—C4 1.8574 (16) Si2—C11 1.8579 (16)
Si1—C5 1.8595 (15) Si2—C10 1.8620 (16)
Si1—C6 1.8602 (16) Si2—C12 1.8644 (17)
Si1—C2 1.9101 (15) Si2—C8 1.9077 (15)
C1—F1 1.3539 (17) C7—F7 1.3591 (17)
C1—C3i 1.379 (2) C7—C9ii 1.378 (2)
C1—C2 1.390 (2) C7—C8 1.389 (2)
C2—C3 1.387 (2) C8—C9 1.387 (2)
C3—F3 1.3605 (16) C9—F9 1.3587 (16)
C3—C1i 1.379 (2) C9—C7ii 1.378 (2)
C4—H4A 0.9600 C10—H10A 0.9600
C4—H4B 0.9600 C10—H10B 0.9600
C4—H4C 0.9600 C10—H10C 0.9600
C5—H5A 0.9600 C11—H11A 0.9600
C5—H5B 0.9600 C11—H11B 0.9600
C5—H5C 0.9600 C11—H11C 0.9600
C6—H6A 0.9600 C12—H12A 0.9600
C6—H6B 0.9600 C12—H12B 0.9600
C6—H6C 0.9600 C12—H12C 0.9600
C4—Si1—C5 112.29 (7) C11—Si2—C10 108.76 (7)
C4—Si1—C6 109.29 (8) C11—Si2—C12 110.31 (8)
C5—Si1—C6 109.76 (7) C10—Si2—C12 111.96 (8)
C4—Si1—C2 109.89 (7) C11—Si2—C8 110.18 (7)
C5—Si1—C2 108.36 (7) C10—Si2—C8 108.80 (7)
C6—Si1—C2 107.11 (7) C12—Si2—C8 106.81 (7)
F1—C1—C3i 117.10 (13) F7—C7—C9ii 117.62 (13)
F1—C1—C2 120.37 (13) F7—C7—C8 118.79 (13)
C3i—C1—C2 122.53 (14) C9ii—C7—C8 123.58 (14)
C3—C2—C1 113.39 (13) C9—C8—C7 113.74 (13)
C3—C2—Si1 120.39 (11) C9—C8—Si2 126.70 (11)
C1—C2—Si1 126.13 (11) C7—C8—Si2 119.55 (11)
F3—C3—C1i 117.22 (13) F9—C9—C7ii 117.13 (13)
F3—C3—C2 118.72 (13) F9—C9—C8 120.19 (13)
C1i—C3—C2 124.06 (13) C7ii—C9—C8 122.68 (13)
Si1—C4—H4A 109.5 Si2—C10—H10A 109.5
Si1—C4—H4B 109.5 Si2—C10—H10B 109.5
H4A—C4—H4B 109.5 H10A—C10—H10B 109.5
Si1—C4—H4C 109.5 Si2—C10—H10C 109.5
H4A—C4—H4C 109.5 H10A—C10—H10C 109.5
H4B—C4—H4C 109.5 H10B—C10—H10C 109.5
Si1—C5—H5A 109.5 Si2—C11—H11A 109.5
Si1—C5—H5B 109.5 Si2—C11—H11B 109.5
H5A—C5—H5B 109.5 H11A—C11—H11B 109.5
Si1—C5—H5C 109.5 Si2—C11—H11C 109.5
H5A—C5—H5C 109.5 H11A—C11—H11C 109.5
H5B—C5—H5C 109.5 H11B—C11—H11C 109.5
Si1—C6—H6A 109.5 Si2—C12—H12A 109.5
Si1—C6—H6B 109.5 Si2—C12—H12B 109.5
H6A—C6—H6B 109.5 H12A—C12—H12B 109.5
Si1—C6—H6C 109.5 Si2—C12—H12C 109.5
H6A—C6—H6C 109.5 H12A—C12—H12C 109.5
H6B—C6—H6C 109.5 H12B—C12—H12C 109.5
F1—C1—C2—C3 179.45 (12) F7—C7—C8—C9 −179.74 (13)
C3i—C1—C2—C3 −1.0 (2) C9ii—C7—C8—C9 0.1 (2)
F1—C1—C2—Si1 −3.9 (2) F7—C7—C8—Si2 −1.36 (19)
C3i—C1—C2—Si1 175.56 (11) C9ii—C7—C8—Si2 178.52 (12)
C4—Si1—C2—C3 167.71 (11) C11—Si2—C8—C9 −5.61 (16)
C5—Si1—C2—C3 −69.26 (13) C10—Si2—C8—C9 −124.75 (14)
C6—Si1—C2—C3 49.09 (13) C12—Si2—C8—C9 114.22 (14)
C4—Si1—C2—C1 −8.68 (15) C11—Si2—C8—C7 176.25 (12)
C5—Si1—C2—C1 114.36 (13) C10—Si2—C8—C7 57.10 (14)
C6—Si1—C2—C1 −127.29 (13) C12—Si2—C8—C7 −63.93 (13)
C1—C2—C3—F3 −178.22 (12) C7—C8—C9—F9 179.85 (13)
Si1—C2—C3—F3 4.96 (18) Si2—C8—C9—F9 1.6 (2)
C1—C2—C3—C1i 1.1 (2) C7—C8—C9—C7ii −0.1 (2)
Si1—C2—C3—C1i −175.76 (11) Si2—C8—C9—C7ii −178.38 (11)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2055).

References

  1. Bardin, V. V., Pressman, L. S., Rogoza, L. N. & Furin, G. G. (1991). J. Fluorine Chem. 53, 213–231.
  2. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Fearon, F. W. G. & Gilman, H. (1967). J. Organomet. Chem. 10, 535–537.
  4. Fields, R., Haszeldine, R. N. & Hubbard, A. F. (1970). J. Chem. Soc. C, pp. 2193–2195.
  5. Frohn, H.-J., Lewin, A. & Bardin, V. V. (1998). J. Organomet. Chem. 570, 255–263.
  6. Haberecht, M., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, o436–o437. [DOI] [PubMed]
  7. Haberecht, M. C., Vitze, H., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, o329–o330.
  8. Hanamoto, T., Koga, Y., Kawanami, T., Furuno, H. & Inanaga, J. (2006). Tetrahedron Lett. 47, 493–495.
  9. Kashiwabara, T. & Tanaka, M. (2006). Organometallics, 25, 4648–4652.
  10. Krumm, B., Klapötke, T. M. & Polborn, K. (2005). Private communication (refcode NAXDAS). CCDC, Cambridge, England.
  11. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  12. Rehm, J. D. D., Ziemer, B. & Szeimies, G. (1999). Eur. J. Org. Chem. pp. 2079–2085.
  13. Sartori, P. & Frohn, H.-J. (1974). Chem. Ber. 107, 1195–1206.
  14. Sekiguchi, A., Fukaya, N., Ichinohe, M. & Ishida, Y. (2000). Eur. J. Inorg. Chem. pp. 1155–1159.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Tamborski, C. & Soloski, E. J. (1969). J. Organomet. Chem. 17, 185–192.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010677/mw2055sup1.cif

e-68-o1082-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010677/mw2055Isup2.hkl

e-68-o1082-Isup2.hkl (129KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010677/mw2055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES