Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1083. doi: 10.1107/S1600536812010641

1-{2-Hy­droxy-6-[3-(pyrrol-1-yl)prop­oxy]phen­yl}ethanone

Ali Ourari a, Djouhra Aggoun a, Sofiane Bouacida b,*
PMCID: PMC3344038  PMID: 22589947

Abstract

In the title compound, C15H17NO3, the mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. The mol­ecule contains an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into chains along [010].

Related literature  

For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).graphic file with name e-68-o1083-scheme1.jpg

Experimental  

Crystal data  

  • C15H17NO3

  • M r = 259.3

  • Triclinic, Inline graphic

  • a = 7.741 (2) Å

  • b = 9.230 (1) Å

  • c = 10.464 (1) Å

  • α = 71.63 (2)°

  • β = 75.222 (1)°

  • γ = 82.081 (1)°

  • V = 684.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.15 × 0.08 × 0.04 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 4238 measured reflections

  • 2586 independent reflections

  • 1995 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.128

  • S = 1.05

  • 2586 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010641/lh5428sup1.cif

e-68-o1083-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010641/lh5428Isup2.hkl

e-68-o1083-Isup2.hkl (124.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010641/lh5428Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is is the centroid of the N1/C12–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.98 (2) 1.578 (19) 2.498 (2) 153.4 (18)
C5—H5⋯Cgi 0.93 2.90 3.641 (2) 138
C11—H11BCgii 0.97 2.74 3.3973 (19) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1 France) for helpful discussions.

supplementary crystallographic information

Comment

The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of Schiff bases (Wu et al., 2003; Saraswat et al., 2006) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid et al., 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan et al., 1986; Coche-Guerente et al., 1995; Ourari et al., 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conducting π-conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar et al., 1997; Huo et al., 1999).

We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H···O hydrogen bond present. In the crystal, there are weak C—H···π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).

Experimental

A solution of 152 mg (1 mmol) of 2,6-dihydroxyacetophenone was added to a solution containing 187 mg (1 mmol) of 1-bromopropyl-3-N-pyrrol and 181 mg (1.7 mmol) of potassium carbonate under argon atmosphere. The mixture was refluxed for 45 h and was allowed to stand at room temperature. After extraction by dichloromethane and purification by chromatography on silica gel using dichloromethane as eluent. Thus, 153 mg of pure compound (I) was recovered, corresponding to the yield of 59%. The suitable single crystals were then obtained from dichloromethane solution by slow evaporation.

Refinement

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic and Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl). Atom H3 was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq (O)

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing showing weak C—H···π interactions involving the centroid (in pink) of the pyrrole ring as dashed lines.

Crystal data

C15H17NO3 Z = 2
Mr = 259.3 F(000) = 276
Triclinic, P1 Dx = 1.258 Mg m3
a = 7.741 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.230 (1) Å Cell parameters from 2211 reflections
c = 10.464 (1) Å θ = 1.0–26.4°
α = 71.63 (2)° µ = 0.09 mm1
β = 75.222 (1)° T = 295 K
γ = 82.081 (1)° Plate, white
V = 684.7 (2) Å3 0.15 × 0.08 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer 1995 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.020
Graphite monochromator θmax = 26.4°, θmin = 3.1°
Detector resolution: 9 pixels mm-1 h = −8→8
CCD rotation images, thick slices scans k = −11→11
4238 measured reflections l = −11→13
2586 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3
2586 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22766 (19) 0.41969 (15) 0.52869 (14) 0.0461 (3)
C2 0.13789 (18) 0.35148 (15) 0.66752 (14) 0.0462 (3)
C3 0.1027 (2) 0.19569 (17) 0.70372 (16) 0.0543 (4)
C4 0.1559 (2) 0.11311 (18) 0.60838 (19) 0.0641 (4)
H4 0.1327 0.0104 0.6342 0.077*
C5 0.2426 (2) 0.18421 (18) 0.47626 (18) 0.0653 (5)
H5 0.278 0.1286 0.4126 0.078*
C6 0.2790 (2) 0.33656 (17) 0.43500 (16) 0.0571 (4)
H6 0.3378 0.3828 0.3445 0.069*
C7 0.0815 (2) 0.43219 (18) 0.77474 (15) 0.0523 (4)
C8 0.1265 (2) 0.59134 (19) 0.75300 (18) 0.0631 (4)
H8A 0.0639 0.6615 0.6879 0.095*
H8B 0.2531 0.5999 0.7177 0.095*
H8C 0.0914 0.6152 0.8393 0.095*
C9 0.3468 (2) 0.64362 (16) 0.35422 (14) 0.0503 (4)
H9A 0.2802 0.633 0.2911 0.06*
H9B 0.4663 0.5963 0.3328 0.06*
C10 0.3574 (2) 0.81022 (16) 0.33794 (15) 0.0503 (4)
H10A 0.4256 0.8209 0.4001 0.06*
H10B 0.2381 0.8572 0.3608 0.06*
C11 0.4473 (2) 0.88841 (17) 0.19002 (16) 0.0605 (4)
H11A 0.5719 0.851 0.1736 0.073*
H11B 0.3915 0.8598 0.1291 0.073*
C12 0.2945 (2) 1.14975 (17) 0.12267 (16) 0.0559 (4)
H12 0.1838 1.1193 0.1252 0.067*
C13 0.3403 (2) 1.29658 (18) 0.08711 (17) 0.0612 (4)
H13 0.2669 1.3843 0.0614 0.073*
C14 0.5179 (3) 1.29123 (19) 0.09628 (18) 0.0657 (5)
H14 0.5847 1.3749 0.0775 0.079*
C15 0.5757 (2) 1.14127 (19) 0.13775 (17) 0.0621 (4)
H15 0.6892 1.1045 0.1524 0.074*
N1 0.43895 (17) 1.05482 (13) 0.15398 (12) 0.0517 (3)
O1 0.25933 (15) 0.57023 (11) 0.49358 (10) 0.0550 (3)
O2 −0.00716 (18) 0.36498 (15) 0.89029 (12) 0.0776 (4)
O3 0.01756 (18) 0.11918 (14) 0.83236 (13) 0.0736 (4)
H3 −0.005 (3) 0.197 (2) 0.882 (2) 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0511 (8) 0.0426 (7) 0.0465 (8) −0.0031 (6) −0.0141 (6) −0.0132 (6)
C2 0.0462 (8) 0.0477 (8) 0.0460 (8) −0.0038 (6) −0.0141 (6) −0.0121 (6)
C3 0.0558 (9) 0.0518 (8) 0.0538 (9) −0.0111 (6) −0.0175 (6) −0.0059 (7)
C4 0.0801 (12) 0.0467 (8) 0.0701 (11) −0.0104 (7) −0.0237 (9) −0.0155 (8)
C5 0.0868 (13) 0.0530 (9) 0.0645 (10) −0.0031 (8) −0.0200 (9) −0.0269 (8)
C6 0.0730 (11) 0.0512 (8) 0.0489 (9) −0.0053 (7) −0.0107 (7) −0.0188 (7)
C7 0.0480 (8) 0.0637 (9) 0.0467 (8) −0.0041 (6) −0.0105 (6) −0.0180 (7)
C8 0.0653 (10) 0.0705 (11) 0.0600 (10) −0.0061 (8) −0.0056 (7) −0.0340 (8)
C9 0.0562 (9) 0.0495 (8) 0.0430 (8) −0.0050 (6) −0.0084 (6) −0.0118 (6)
C10 0.0575 (9) 0.0465 (8) 0.0455 (8) −0.0052 (6) −0.0110 (6) −0.0111 (6)
C11 0.0778 (11) 0.0459 (8) 0.0492 (9) −0.0042 (7) −0.0038 (7) −0.0103 (7)
C12 0.0514 (9) 0.0570 (9) 0.0536 (9) −0.0068 (7) −0.0066 (6) −0.0108 (7)
C13 0.0689 (11) 0.0508 (9) 0.0560 (9) −0.0013 (7) −0.0079 (7) −0.0105 (7)
C14 0.0820 (12) 0.0549 (9) 0.0598 (10) −0.0214 (8) −0.0160 (8) −0.0093 (8)
C15 0.0612 (10) 0.0631 (10) 0.0592 (10) −0.0127 (7) −0.0178 (7) −0.0068 (8)
N1 0.0588 (8) 0.0448 (7) 0.0453 (7) −0.0061 (5) −0.0065 (5) −0.0076 (5)
O1 0.0754 (7) 0.0439 (6) 0.0426 (6) −0.0116 (5) −0.0041 (5) −0.0123 (4)
O2 0.0910 (9) 0.0849 (9) 0.0502 (7) −0.0214 (7) 0.0058 (6) −0.0209 (6)
O3 0.0885 (9) 0.0633 (8) 0.0604 (8) −0.0263 (6) −0.0079 (6) −0.0040 (6)

Geometric parameters (Å, º)

C1—O1 1.3609 (17) C9—H9A 0.97
C1—C6 1.378 (2) C9—H9B 0.97
C1—C2 1.421 (2) C10—C11 1.512 (2)
C2—C3 1.413 (2) C10—H10A 0.97
C2—C7 1.480 (2) C10—H10B 0.97
C3—O3 1.3496 (19) C11—N1 1.4579 (18)
C3—C4 1.389 (2) C11—H11A 0.97
C4—C5 1.367 (2) C11—H11B 0.97
C4—H4 0.93 C12—C13 1.359 (2)
C5—C6 1.381 (2) C12—N1 1.364 (2)
C5—H5 0.93 C12—H12 0.93
C6—H6 0.93 C13—C14 1.396 (2)
C7—O2 1.2406 (18) C13—H13 0.93
C7—C8 1.490 (2) C14—C15 1.362 (2)
C8—H8A 0.96 C14—H14 0.93
C8—H8B 0.96 C15—N1 1.357 (2)
C8—H8C 0.96 C15—H15 0.93
C9—O1 1.4297 (17) O3—H3 0.98 (2)
C9—C10 1.5042 (19)
O1—C1—C6 122.13 (13) C10—C9—H9B 109.9
O1—C1—C2 116.67 (12) H9A—C9—H9B 108.3
C6—C1—C2 121.19 (13) C9—C10—C11 108.84 (12)
C3—C2—C1 116.77 (13) C9—C10—H10A 109.9
C3—C2—C7 118.82 (13) C11—C10—H10A 109.9
C1—C2—C7 124.41 (13) C9—C10—H10B 109.9
O3—C3—C4 116.60 (14) C11—C10—H10B 109.9
O3—C3—C2 121.99 (15) H10A—C10—H10B 108.3
C4—C3—C2 121.41 (14) N1—C11—C10 114.44 (13)
C5—C4—C3 119.40 (14) N1—C11—H11A 108.7
C5—C4—H4 120.3 C10—C11—H11A 108.7
C3—C4—H4 120.3 N1—C11—H11B 108.7
C4—C5—C6 121.59 (15) C10—C11—H11B 108.7
C4—C5—H5 119.2 H11A—C11—H11B 107.6
C6—C5—H5 119.2 C13—C12—N1 108.26 (14)
C1—C6—C5 119.62 (15) C13—C12—H12 125.9
C1—C6—H6 120.2 N1—C12—H12 125.9
C5—C6—H6 120.2 C12—C13—C14 107.29 (15)
O2—C7—C2 119.14 (14) C12—C13—H13 126.4
O2—C7—C8 117.11 (14) C14—C13—H13 126.4
C2—C7—C8 123.74 (13) C15—C14—C13 107.58 (15)
C7—C8—H8A 109.5 C15—C14—H14 126.2
C7—C8—H8B 109.5 C13—C14—H14 126.2
H8A—C8—H8B 109.5 N1—C15—C14 108.19 (15)
C7—C8—H8C 109.5 N1—C15—H15 125.9
H8A—C8—H8C 109.5 C14—C15—H15 125.9
H8B—C8—H8C 109.5 C15—N1—C12 108.68 (13)
O1—C9—C10 108.82 (11) C15—N1—C11 125.99 (14)
O1—C9—H9A 109.9 C12—N1—C11 125.22 (13)
C10—C9—H9A 109.9 C1—O1—C9 118.35 (11)
O1—C9—H9B 109.9 C3—O3—H3 102.9 (12)
O1—C1—C2—C3 179.16 (12) C3—C2—C7—C8 173.87 (14)
C6—C1—C2—C3 −0.6 (2) C1—C2—C7—C8 −5.6 (2)
O1—C1—C2—C7 −1.4 (2) O1—C9—C10—C11 −179.11 (12)
C6—C1—C2—C7 178.83 (13) C9—C10—C11—N1 170.05 (13)
C1—C2—C3—O3 −179.70 (13) N1—C12—C13—C14 0.30 (18)
C7—C2—C3—O3 0.8 (2) C12—C13—C14—C15 −0.2 (2)
C1—C2—C3—C4 0.9 (2) C13—C14—C15—N1 0.10 (19)
C7—C2—C3—C4 −178.57 (13) C14—C15—N1—C12 0.08 (18)
O3—C3—C4—C5 179.94 (16) C14—C15—N1—C11 176.39 (15)
C2—C3—C4—C5 −0.7 (3) C13—C12—N1—C15 −0.24 (18)
C3—C4—C5—C6 0.1 (3) C13—C12—N1—C11 −176.59 (14)
O1—C1—C6—C5 −179.71 (14) C10—C11—N1—C15 104.65 (18)
C2—C1—C6—C5 0.1 (2) C10—C11—N1—C12 −79.63 (19)
C4—C5—C6—C1 0.2 (3) C6—C1—O1—C9 0.8 (2)
C3—C2—C7—O2 −5.5 (2) C2—C1—O1—C9 −179.01 (12)
C1—C2—C7—O2 174.99 (14) C10—C9—O1—C1 176.69 (12)

Hydrogen-bond geometry (Å, º)

Cg is is the centroid of the N1/C12–C15 ring.

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.98 (2) 1.578 (19) 2.498 (2) 153.4 (18)
C5—H5···Cgi 0.93 2.90 3.641 (2) 138
C11—H11B···Cgii 0.97 2.74 3.3973 (19) 125

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5428).

References

  1. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  3. Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 311, 23–30.
  4. Deronzier, A. & Moutet, J. C. (1996). Coord. Chem. Rev. 147, 339–371.
  5. Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9.
  9. Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172.
  10. MacDearmid, A. G. (2001). Rev. Mod. Phys. 73, 701–712.
  11. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736–1739.
  14. Saraswat, K., Prasad, R. N., Ratnani, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Inorg. Chim. Acta, 359, 1291–1295.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85.
  17. Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320. [DOI] [PubMed]
  18. Wu, S. & Lu, S. (2003). J. Mol. Catal. A, 198, 29–38.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010641/lh5428sup1.cif

e-68-o1083-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010641/lh5428Isup2.hkl

e-68-o1083-Isup2.hkl (124.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010641/lh5428Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES