Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1088. doi: 10.1107/S1600536812010896

1-Phenyl-1H-pyrazole-4-carbaldehyde

Abdullah M Asiri a,b,, Hassan M Faidallah a, Tariq R Sobahi a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344042  PMID: 22589951

Abstract

In the title mol­ecule, C10H8N2O, the five- and six-membered rings form a dihedral angle of 10.14 (9)°. The aldehyde group is almost coplanar with the pyrazole ring to which it is connected [O—C—C—C torsion angle = −179.35 (17)°]. In the crystal, inversion dimers are linked by four C—H⋯O inter­actions as the carbonyl O atom accepts two such bonds. The dimeric aggregates are linked into supra­molecular layers in the ac plane by C—H⋯π and π–π [ring centroid(pyrrole)⋯ring centroid(phen­yl) = 3.8058 (10) Å] inter­actions.

Related literature  

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri, Al-Youbi, et al. (2012); Asiri, Faidallah et al. (2012). For the synthesis, see: Vera-DiVaio et al. (2009).graphic file with name e-68-o1088-scheme1.jpg

Experimental  

Crystal data  

  • C10H8N2O

  • M r = 172.18

  • Monoclinic, Inline graphic

  • a = 11.1657 (10) Å

  • b = 5.0858 (4) Å

  • c = 15.3034 (11) Å

  • β = 111.130 (9)°

  • V = 810.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.972, T max = 0.986

  • 3485 measured reflections

  • 1814 independent reflections

  • 1359 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.136

  • S = 0.99

  • 1814 reflections

  • 151 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010896/bt5843sup1.cif

e-68-o1088-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010896/bt5843Isup2.hkl

e-68-o1088-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.960 (19) 2.432 (19) 3.379 (2) 168.6 (13)
C10—H10⋯O1i 0.978 (19) 2.335 (19) 3.303 (2) 170.8 (16)
C8—H8⋯Cg1ii 0.978 (18) 2.947 (18) 3.761 (2) 141.4 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In continuation of structural studies of pyrazole derivatives (Asiri, Al-Youbi, et al., 2012; Asiri, Faidallah et al., 2012), of interest, for example, owing to their anti-bacterial activity (Kane et al., 2003), the title compound, 1-phenyl-1H-pyrazole-4-carbaldehyde (I), was investigated crystallographically.

In (I), Fig. 1, the dihedral angle between the five- and six-membered rings is 10.14 (9) °, indicating a slight twist in the molecule. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the O1—C1—C2—C3 torsion angle of -179.35 (17)°.

Inversion related molecules are connected into dimers via C—H···O interactions involving a bifurcated carbonyl-O atom, Table 1. Dimers are linked into supramolecular layers in the ac plane via C—H···π and π—π interactions occurring between the five- and six-membered rings [ring centroid···ring centroid distance = 3.8058 (10) Å, angle of inclination = 10.14 (9)° for symmetry operation: x, -1 + y, z], Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.

Experimental

N,N-Dimethylformamide (25.6 ml, 0.33 mmol) was stirred in around flask within an ice-bath and POCl3 (21.6 ml, 0.23 mmol) was added drop-wise. Then N-phenylpyrazole was added (4.4 ml, 0.033 mmol) to this cold mixture. The reaction was allowed to warm to room temperature and then heated at reflux for 6 h. The temperature was kept at 368–373 K. When the reaction was completed, the contents were poured onto crushed ice and made weakly alkaline with a saturated solution of sodium carbonate. The solid was filtered off, washed with water and recrystallized from ethanol. Yield: 65%. M.pt. 358–359 K. (lit. 358 K; Vera-DiVaio et al., 2009).

Refinement

H-atoms were freely refined; the range of C—H bond lengths is 0.960 (17)–1.023 (18) Å. Owing to poor agreement, the (3 2 6) reflection was omitted from the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular layer in the ac plane in (I). The C—H···O, C—H···π and π—π interactions are shown as orange, purple and blue dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents of (I). The C—H···O, C—H···π and π—π interactions are shown as orange, purple and blue dashed lines, respectively.

Crystal data

C10H8N2O F(000) = 360
Mr = 172.18 Dx = 1.411 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1251 reflections
a = 11.1657 (10) Å θ = 2.8–27.5°
b = 5.0858 (4) Å µ = 0.10 mm1
c = 15.3034 (11) Å T = 100 K
β = 111.130 (9)° Prism, light-brown
V = 810.60 (11) Å3 0.30 × 0.30 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1814 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1359 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.050
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.8°
ω scan h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −5→6
Tmin = 0.972, Tmax = 0.986 l = −19→13
3485 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 All H-atom parameters refined
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0732P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
1814 reflections Δρmax = 0.28 e Å3
151 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.013 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.11384 (11) 0.2706 (2) 0.62516 (8) 0.0286 (4)
N1 0.26714 (12) 0.9228 (3) 0.52304 (9) 0.0196 (3)
N2 0.38346 (13) 0.9268 (3) 0.59584 (9) 0.0247 (4)
C1 0.21644 (15) 0.3842 (3) 0.65682 (11) 0.0230 (4)
C2 0.25665 (15) 0.6026 (3) 0.61478 (11) 0.0209 (4)
C3 0.37465 (16) 0.7329 (3) 0.65005 (12) 0.0245 (4)
C4 0.18990 (15) 0.7336 (3) 0.53228 (11) 0.0204 (4)
C5 0.24267 (15) 1.1131 (3) 0.45059 (10) 0.0196 (4)
C6 0.34207 (16) 1.2698 (3) 0.44624 (11) 0.0226 (4)
C7 0.31714 (17) 1.4569 (4) 0.37669 (12) 0.0248 (4)
C8 0.19463 (17) 1.4863 (4) 0.31105 (11) 0.0247 (4)
C9 0.09706 (17) 1.3272 (4) 0.31553 (12) 0.0263 (4)
C10 0.11990 (16) 1.1412 (3) 0.38573 (12) 0.0242 (4)
H1 0.2818 (16) 0.327 (4) 0.7201 (13) 0.022 (4)*
H3 0.4456 (17) 0.689 (4) 0.7089 (13) 0.027 (5)*
H4 0.1060 (17) 0.707 (3) 0.4858 (12) 0.022 (5)*
H6 0.4267 (19) 1.239 (4) 0.4903 (14) 0.033 (5)*
H7 0.3846 (16) 1.567 (4) 0.3715 (12) 0.023 (5)*
H8 0.1801 (15) 1.619 (4) 0.2621 (12) 0.019 (4)*
H9 0.0057 (18) 1.351 (4) 0.2696 (14) 0.037 (5)*
H10 0.0500 (15) 1.030 (4) 0.3886 (12) 0.023 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0250 (7) 0.0306 (8) 0.0274 (6) −0.0045 (5) 0.0063 (5) −0.0006 (6)
N1 0.0183 (7) 0.0214 (8) 0.0154 (6) 0.0002 (5) 0.0015 (5) −0.0005 (6)
N2 0.0193 (7) 0.0286 (8) 0.0194 (7) −0.0011 (6) −0.0013 (6) 0.0005 (6)
C1 0.0229 (9) 0.0254 (9) 0.0184 (8) 0.0017 (7) 0.0046 (7) −0.0011 (7)
C2 0.0205 (8) 0.0216 (9) 0.0186 (7) 0.0007 (6) 0.0047 (6) −0.0032 (7)
C3 0.0225 (9) 0.0270 (10) 0.0192 (8) 0.0005 (7) 0.0018 (7) 0.0001 (7)
C4 0.0182 (8) 0.0220 (9) 0.0185 (7) −0.0007 (6) 0.0035 (7) −0.0038 (7)
C5 0.0230 (8) 0.0197 (9) 0.0142 (7) 0.0011 (6) 0.0042 (6) −0.0017 (6)
C6 0.0196 (9) 0.0263 (10) 0.0191 (8) −0.0015 (7) 0.0038 (7) −0.0026 (7)
C7 0.0271 (9) 0.0243 (9) 0.0238 (8) −0.0024 (7) 0.0103 (7) −0.0034 (8)
C8 0.0313 (9) 0.0205 (9) 0.0209 (8) 0.0021 (7) 0.0076 (7) 0.0027 (8)
C9 0.0242 (9) 0.0253 (10) 0.0236 (8) 0.0031 (7) 0.0017 (7) 0.0037 (8)
C10 0.0212 (9) 0.0222 (9) 0.0251 (8) −0.0010 (7) 0.0034 (7) 0.0002 (8)

Geometric parameters (Å, º)

O1—C1 1.2168 (19) C5—C10 1.380 (2)
N1—C4 1.333 (2) C5—C6 1.387 (2)
N1—N2 1.3731 (17) C6—C7 1.379 (2)
N1—C5 1.422 (2) C6—H6 0.96 (2)
N2—C3 1.315 (2) C7—C8 1.383 (2)
C1—C2 1.435 (2) C7—H7 0.963 (18)
C1—H1 1.023 (18) C8—C9 1.379 (3)
C2—C4 1.384 (2) C8—H8 0.978 (18)
C2—C3 1.398 (2) C9—C10 1.384 (2)
C3—H3 0.986 (18) C9—H9 1.016 (18)
C4—H4 0.960 (17) C10—H10 0.977 (17)
C4—N1—N2 112.57 (12) C10—C5—N1 119.55 (14)
C4—N1—C5 128.61 (13) C6—C5—N1 119.75 (14)
N2—N1—C5 118.81 (13) C7—C6—C5 119.40 (15)
C3—N2—N1 103.68 (13) C7—C6—H6 122.1 (12)
O1—C1—C2 126.22 (15) C5—C6—H6 118.4 (12)
O1—C1—H1 119.3 (10) C6—C7—C8 120.47 (16)
C2—C1—H1 114.5 (10) C6—C7—H7 121.1 (11)
C4—C2—C3 104.28 (15) C8—C7—H7 118.4 (11)
C4—C2—C1 129.01 (15) C9—C8—C7 119.52 (17)
C3—C2—C1 126.71 (15) C9—C8—H8 121.9 (10)
N2—C3—C2 112.73 (14) C7—C8—H8 118.6 (10)
N2—C3—H3 121.7 (11) C8—C9—C10 120.80 (16)
C2—C3—H3 125.6 (11) C8—C9—H9 120.6 (11)
N1—C4—C2 106.74 (14) C10—C9—H9 118.5 (11)
N1—C4—H4 121.3 (10) C5—C10—C9 119.10 (16)
C2—C4—H4 131.9 (11) C5—C10—H10 120.7 (10)
C10—C5—C6 120.70 (15) C9—C10—H10 120.2 (10)
C4—N1—N2—C3 0.04 (18) N2—N1—C5—C10 −169.04 (14)
C5—N1—N2—C3 179.12 (14) C4—N1—C5—C6 −170.62 (15)
O1—C1—C2—C4 1.2 (3) N2—N1—C5—C6 10.5 (2)
O1—C1—C2—C3 −179.35 (17) C10—C5—C6—C7 0.6 (2)
N1—N2—C3—C2 0.16 (19) N1—C5—C6—C7 −178.94 (14)
C4—C2—C3—N2 −0.3 (2) C5—C6—C7—C8 −0.8 (3)
C1—C2—C3—N2 −179.83 (16) C6—C7—C8—C9 0.0 (3)
N2—N1—C4—C2 −0.21 (18) C7—C8—C9—C10 1.0 (3)
C5—N1—C4—C2 −179.18 (15) C6—C5—C10—C9 0.4 (3)
C3—C2—C4—N1 0.29 (17) N1—C5—C10—C9 179.95 (15)
C1—C2—C4—N1 179.81 (16) C8—C9—C10—C5 −1.2 (3)
C4—N1—C5—C10 9.9 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C5–C10 ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.960 (19) 2.432 (19) 3.379 (2) 168.6 (13)
C10—H10···O1i 0.978 (19) 2.335 (19) 3.303 (2) 170.8 (16)
C8—H8···Cg1ii 0.978 (18) 2.947 (18) 3.761 (2) 141.4 (14)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5843).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o794. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o764. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463–4466. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010896/bt5843sup1.cif

e-68-o1088-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010896/bt5843Isup2.hkl

e-68-o1088-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES