Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1091–o1092. doi: 10.1107/S1600536812010756

rac-[3-Hydroxy-6,9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a,7,8,9,10,10a-hexahydro-6H-1,9-epoxybenzo[c]chromen-4-yl](phenyl)methanone

Gwendoline Cheng Lian Ee a,*, Soek Sin Teh a, Huey Chong Kwong a, Mohamed Ibrahim Mohamed Tahir a, Siau Hui Mah b
PMCID: PMC3344045  PMID: 22589954

Abstract

The title compound congestiflorone, C28H32O4, which was isolated from the stem bark of Mesua congestiflora, consists of a benzophenone skeleton with two attached pyran rings to which a cyclo­hexane ring and a C6 side chain are bonded. The benzene ring is significantly distorted from planarity (r.m.s. deviation = 0.0007 Å) due to the constraints imposed by junctions with the two pyran rings. The cyclo­hexane ring is in a chair conformation, one pyran ring is in a boat conformation, while the other is a distorted chair. The phenyl and benzene rings make a dihedral angle of 55.85 (9)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked via C—H⋯O inter­actions.

Related literature  

For phytochemical investigations of Mesua congestiflora, see: Awang et al. (2010); Bala & Seshadri (1971); Ee et al. (2005b ); Bandaranayak et al. (1975); Morel et al. (1999); Walia & Mukerjee (1984). For the biological activity of Congestiflora species, see: Pinto et al. (1994); Ee et al. (2005a ); Mazumder et al. (2004); Verotta et al. (2004); Huerta-Reyes et al. (2004). For related structures, see: Hua et al. (2008); Liu et al. (2005). For a description of the Cambridge Structural Database, see Allen (2002)graphic file with name e-68-o1091-scheme1.jpg

Experimental  

Crystal data  

  • C28H32O4

  • M r = 432.56

  • Triclinic, Inline graphic

  • a = 6.2022 (4) Å

  • b = 7.5220 (4) Å

  • c = 24.7673 (15) Å

  • α = 98.410 (5)°

  • β = 94.425 (5)°

  • γ = 94.200 (5)°

  • V = 1135.43 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 150 K

  • 0.29 × 0.09 × 0.05 mm

Data collection  

  • Oxford Diffraction Gemin area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.942, T max = 0.968

  • 15011 measured reflections

  • 4340 independent reflections

  • 3423 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.117

  • S = 1.00

  • 4321 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010756/kp2392sup1.cif

e-68-o1091-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010756/kp2392Isup2.hkl

e-68-o1091-Isup2.hkl (272KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H181⋯O1i 1.00 2.60 3.563 (3) 162
O11—H111⋯O1 0.87 1.78 2.551 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Ministry of Science, Technology and Innovation (MOSTI) for a grant from the escience fund.

supplementary crystallographic information

Comment

Mesua congestiflora is native to Indonesia and is also distributed throughout Borneo, Sarawak. Previous phytochemical investigations on the genus show the existence of xanthones (Bandaranayak et al. 1975; Walia & Mukerjee 1984; Ee et al. 2005b), coumarins (Bandaranayak, Selliah et al. 1975; Morel, Guilet et al. 1999; Awang, Chan et al. 2010), terpenoids (Ee et al. 2005a) and essential oils (Bala & Seshadri 1971). These secondary metabolites have been extensively reported for their biological activities; for instance antifungal(Pinto et al. 1994), anticancer(Ee et al. 2005a), antibacterial (Mazumder, Dastidar et al. 2004; Verotta, Lovaglio et al. 2004), and anti-HIV-1(Huerta-Reyes et al. 2004). However, pharmacognosy and preliminary phytochemical analysis on this species have not been reported before.

The title compound (I), congestiflorone C28H32O4 skeleton comprises five 6-membered rings and a 1-methylpent-2-enyl side chain (Fig. 1). The skeleton is similar to that of Sumadain A (Hua, Wang et al. 2008) except for the absence of 2 methylene groups next to the carbonyl group. Dihedral angle of those two benzene rings was 55.85 (9)°. The benzene ring (C9—C10—C12—C13—C21—C22) is not planar (the largest deviation from the best least squares plane is 0.082 (2) Å at C22). This departure from planarity of the ring A might be caused by the constraint of two adjacent pyrane rings which adapt a distorted chair conformation and a boat conformation. The cyclohexane ring adapted a chair conformation and the puckering parameter is Q= 0.5635 (18), θ= 166.13 (18)°, Φ2= 93.4 (8)°. The conformations of pyran and cyclohexane rings are comparable to the structure of Sumadain A (Hua, Wang et al. 2008). The orientation of the 1-methylpent-2-enly (C25—C28) side chain with respect to the cyclohexane ring is indicated by the torsion angle of C19—C25—C26—C27 = 177.17 (16)° and C25—C26—C27—C28=144.0 (2)° [169.5 (3)° and 145.4 (4)° respectively in Hua, Wang et al. 2008]. The structure of the molecule exhibits an intramolecular O—H···O hydrogen bond (Table 1). In the crystal, molecules are linked via a intermolecular C—H···O hydrogen bonding in the a,b-plane (Fig. 2).

The cystallographic data of this crystal structure has been deposited at Cambridge Crystallographic Data Center with deposition number CCDC 849099. (Allen, 2002)

Experimental

The stem bark of Mesua congestiflora was collected from the Sri Aman district in Sarawak, Malaysia. The sample (840 g) was milled, air-dried and ground, the powdered sample was extracted with n-hexane. The extract was dried under reduced pressure in a rotary evaporator to yield the hexane extract (5.50 g). Stepwise gradient systems using hexane/chloroform and chloroform/methanol or hexane/ethyl acetate and ethyl acetate/methanol, were applied for the separation and purification of the extract. Congestiflorone, a yellowish crystals with the melting point of 483 K were isolated. This compound was crystallised from slow evaporation of ethyl acetate at room temperature.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound shows a 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond O11-H···O1 is observed.

Fig. 2.

Fig. 2.

The crystal packing of the title compound is viewed along the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrohen bonds are shown in dashed lines.

Crystal data

C28H32O4 Z = 2
Mr = 432.56 F(000) = 464
Triclinic, P1 Dx = 1.265 Mg m3
Hall symbol: -P 1 Melting point: 483 K
a = 6.2022 (4) Å Cu Kα radiation, λ = 1.54180 Å
b = 7.5220 (4) Å Cell parameters from 4627 reflections
c = 24.7673 (15) Å θ = 4–71°
α = 98.410 (5)° µ = 0.66 mm1
β = 94.425 (5)° T = 150 K
γ = 94.200 (5)° Needle, yellow
V = 1135.43 (12) Å3 0.29 × 0.09 × 0.05 mm

Data collection

Oxford Diffraction Gemin area-detector diffractometer 4340 independent reflections
Radiation source: sealed x-ray tube 3423 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
ω/2θ scans θmax = 71.2°, θmin = 3.6°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) h = −7→7
Tmin = 0.942, Tmax = 0.968 k = −9→9
15011 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.117 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.61P], where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
4321 reflections Δρmax = 0.39 e Å3
289 parameters Δρmin = −0.34 e Å3
0 restraints

Special details

Refinement. For this compound, 15011 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 4340 reflection left. 19 more reflections were filtered, as σ cutoff was set as -3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 4321.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.3916 (2) 0.62936 (17) 0.77877 (5) 0.0320
C2 1.2067 (3) 0.5510 (2) 0.76653 (7) 0.0250
C3 1.1384 (3) 0.4954 (2) 0.70701 (7) 0.0263
C4 0.9367 (3) 0.5313 (2) 0.68404 (8) 0.0291
C5 0.8872 (3) 0.4939 (3) 0.62773 (8) 0.0365
C6 1.0351 (4) 0.4162 (3) 0.59461 (8) 0.0431
C7 1.2346 (4) 0.3778 (3) 0.61725 (9) 0.0447
C8 1.2880 (3) 0.4204 (3) 0.67332 (8) 0.0355
C9 1.0615 (3) 0.5227 (2) 0.80880 (7) 0.0235
C10 1.1140 (3) 0.6170 (2) 0.86326 (7) 0.0255
O11 1.2907 (2) 0.73655 (17) 0.87537 (5) 0.0336
C12 0.9944 (3) 0.5844 (2) 0.90629 (7) 0.0267
C13 0.8146 (3) 0.4582 (2) 0.89609 (7) 0.0239
O14 0.7243 (2) 0.40329 (16) 0.93968 (5) 0.0282
C15 0.5848 (3) 0.2316 (2) 0.92940 (7) 0.0255
C16 0.7221 (3) 0.0698 (2) 0.91977 (7) 0.0263
C17 0.8289 (3) 0.0419 (2) 0.86545 (7) 0.0251
C18 0.6761 (3) 0.0648 (2) 0.81520 (7) 0.0224
C19 0.7858 (3) 0.0839 (2) 0.76156 (7) 0.0235
O20 0.82634 (19) 0.27776 (16) 0.75412 (5) 0.0252
C21 0.8751 (3) 0.3983 (2) 0.80136 (7) 0.0220
C22 0.7405 (3) 0.3818 (2) 0.84248 (7) 0.0222
C23 0.5588 (3) 0.2361 (2) 0.82988 (7) 0.0217
C24 0.4288 (3) 0.2301 (2) 0.87914 (7) 0.0252
C25 0.6276 (3) 0.0004 (2) 0.71244 (7) 0.0263
C26 0.6933 (3) 0.0294 (3) 0.65592 (8) 0.0363
C27 0.5303 (3) −0.0667 (3) 0.61092 (8) 0.0320
C28 0.5695 (3) −0.1476 (3) 0.56176 (7) 0.0294
C29 0.3899 (3) −0.2423 (3) 0.52118 (8) 0.0404
C30 0.7924 (3) −0.1539 (3) 0.54199 (9) 0.0430
C31 1.0059 (3) 0.0067 (3) 0.75961 (8) 0.0304
C32 0.4671 (3) 0.2328 (3) 0.98082 (8) 0.0319
H41 0.8314 0.5832 0.7073 0.0367*
H51 0.7488 0.5234 0.6122 0.0454*
H61 0.9999 0.3875 0.5557 0.0533*
H71 1.3367 0.3232 0.5942 0.0547*
H81 1.4295 0.3981 0.6891 0.0457*
H121 1.0361 0.6440 0.9423 0.0345*
H161 0.8374 0.0796 0.9503 0.0335*
H162 0.6217 −0.0382 0.9209 0.0328*
H171 0.9603 0.1294 0.8679 0.0317*
H172 0.8805 −0.0812 0.8599 0.0324*
H181 0.5662 −0.0425 0.8070 0.0291*
H231 0.4619 0.2584 0.7977 0.0269*
H241 0.3411 0.3350 0.8846 0.0319*
H242 0.3299 0.1190 0.8740 0.0317*
H251 0.6091 −0.1324 0.7137 0.0342*
H252 0.4852 0.0508 0.7176 0.0341*
H261 0.8365 −0.0145 0.6505 0.0461*
H262 0.7055 0.1603 0.6535 0.0467*
H271 0.3814 −0.0696 0.6200 0.0408*
H291 0.3915 −0.1929 0.4867 0.0632*
H292 0.4065 −0.3713 0.5141 0.0633*
H293 0.2496 −0.2260 0.5358 0.0628*
H301 0.7949 −0.1071 0.5070 0.0677*
H302 0.8301 −0.2777 0.5363 0.0685*
H303 0.9008 −0.0786 0.5679 0.0685*
H311 1.0584 0.0141 0.7238 0.0482*
H312 1.1094 0.0772 0.7879 0.0485*
H313 0.9902 −0.1190 0.7658 0.0489*
H323 0.3689 0.1245 0.9770 0.0491*
H322 0.5668 0.2357 1.0134 0.0499*
H321 0.3815 0.3378 0.9856 0.0494*
H111 1.3748 0.7225 0.8486 0.0530*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0270 (7) 0.0331 (7) 0.0343 (7) −0.0087 (6) 0.0017 (5) 0.0060 (6)
C2 0.0252 (9) 0.0171 (9) 0.0327 (10) −0.0010 (7) 0.0009 (7) 0.0060 (7)
C3 0.0282 (9) 0.0220 (9) 0.0289 (9) −0.0045 (7) 0.0043 (7) 0.0067 (7)
C4 0.0316 (10) 0.0255 (10) 0.0307 (10) −0.0008 (8) 0.0052 (8) 0.0064 (8)
C5 0.0369 (11) 0.0391 (12) 0.0333 (11) −0.0020 (9) −0.0017 (8) 0.0103 (9)
C6 0.0479 (13) 0.0531 (14) 0.0259 (10) −0.0068 (11) 0.0022 (9) 0.0043 (9)
C7 0.0419 (12) 0.0568 (14) 0.0341 (11) 0.0006 (10) 0.0143 (9) −0.0010 (10)
C8 0.0297 (10) 0.0410 (12) 0.0356 (11) 0.0000 (9) 0.0073 (8) 0.0046 (9)
C9 0.0252 (9) 0.0196 (9) 0.0257 (9) 0.0003 (7) 0.0007 (7) 0.0045 (7)
C10 0.0263 (9) 0.0182 (9) 0.0308 (10) −0.0024 (7) −0.0020 (7) 0.0047 (7)
O11 0.0342 (7) 0.0309 (7) 0.0319 (7) −0.0133 (6) −0.0005 (6) 0.0020 (6)
C12 0.0331 (10) 0.0213 (9) 0.0233 (9) −0.0015 (8) −0.0005 (7) −0.0012 (7)
C13 0.0263 (9) 0.0201 (9) 0.0254 (9) 0.0025 (7) 0.0052 (7) 0.0020 (7)
O14 0.0326 (7) 0.0272 (7) 0.0227 (6) −0.0052 (5) 0.0049 (5) −0.0005 (5)
C15 0.0246 (9) 0.0251 (9) 0.0256 (9) −0.0033 (7) 0.0036 (7) 0.0024 (7)
C16 0.0254 (9) 0.0280 (10) 0.0257 (9) −0.0002 (7) −0.0001 (7) 0.0071 (7)
C17 0.0241 (9) 0.0220 (9) 0.0295 (9) 0.0022 (7) 0.0025 (7) 0.0050 (7)
C18 0.0211 (8) 0.0197 (9) 0.0254 (9) −0.0023 (7) 0.0034 (7) 0.0014 (7)
C19 0.0224 (9) 0.0199 (9) 0.0264 (9) −0.0036 (7) 0.0031 (7) 0.0003 (7)
O20 0.0300 (7) 0.0226 (6) 0.0213 (6) −0.0055 (5) 0.0033 (5) 0.0009 (5)
C21 0.0234 (8) 0.0189 (9) 0.0228 (9) 0.0008 (7) −0.0009 (7) 0.0025 (7)
C22 0.0224 (8) 0.0188 (9) 0.0254 (9) 0.0026 (7) 0.0010 (7) 0.0035 (7)
C23 0.0191 (8) 0.0231 (9) 0.0228 (9) 0.0004 (7) 0.0006 (7) 0.0039 (7)
C24 0.0220 (9) 0.0269 (9) 0.0266 (9) 0.0012 (7) 0.0033 (7) 0.0037 (7)
C25 0.0247 (9) 0.0247 (9) 0.0270 (9) −0.0038 (7) 0.0030 (7) −0.0013 (7)
C26 0.0315 (10) 0.0470 (13) 0.0264 (10) −0.0084 (9) 0.0046 (8) −0.0027 (9)
C27 0.0267 (9) 0.0387 (11) 0.0291 (10) −0.0007 (8) 0.0037 (8) 0.0011 (8)
C28 0.0323 (10) 0.0303 (10) 0.0254 (9) 0.0032 (8) 0.0012 (8) 0.0040 (8)
C29 0.0416 (12) 0.0440 (13) 0.0321 (11) 0.0039 (10) −0.0013 (9) −0.0041 (9)
C30 0.0398 (12) 0.0566 (14) 0.0316 (11) 0.0061 (10) 0.0092 (9) −0.0002 (10)
C31 0.0249 (9) 0.0349 (11) 0.0296 (10) 0.0009 (8) 0.0043 (7) −0.0015 (8)
C32 0.0332 (10) 0.0350 (11) 0.0277 (10) −0.0017 (8) 0.0076 (8) 0.0050 (8)

Geometric parameters (Å, º)

O1—C2 1.245 (2) C18—C23 1.537 (2)
C2—C3 1.492 (3) C18—H181 1.004
C2—C9 1.461 (2) C19—O20 1.502 (2)
C3—C4 1.395 (3) C19—C25 1.530 (2)
C3—C8 1.391 (3) C19—C31 1.523 (2)
C4—C5 1.388 (3) O20—C21 1.370 (2)
C4—H41 0.969 C21—C22 1.379 (2)
C5—C6 1.382 (3) C22—C23 1.494 (2)
C5—H51 0.967 C23—C24 1.518 (2)
C6—C7 1.386 (3) C23—H231 1.003
C6—H61 0.961 C24—H241 0.990
C7—C8 1.387 (3) C24—H242 0.986
C7—H71 0.959 C25—C26 1.529 (2)
C8—H81 0.969 C25—H251 1.002
C9—C10 1.431 (2) C25—H252 0.996
C9—C21 1.416 (2) C26—C27 1.506 (3)
C10—O11 1.351 (2) C26—H261 0.982
C10—C12 1.385 (2) C26—H262 0.993
O11—H111 0.874 C27—C28 1.328 (3)
C12—C13 1.393 (2) C27—H271 0.967
C12—H121 0.945 C28—C29 1.503 (3)
C13—O14 1.357 (2) C28—C30 1.504 (3)
C13—C22 1.396 (2) C29—H291 0.981
O14—C15 1.479 (2) C29—H292 0.975
C15—C16 1.536 (2) C29—H293 0.977
C15—C24 1.515 (2) C30—H301 0.982
C15—C32 1.515 (2) C30—H302 0.970
C16—C17 1.539 (2) C30—H303 0.978
C16—H161 0.991 C31—H311 0.976
C16—H162 0.992 C31—H312 0.978
C17—C18 1.543 (2) C31—H313 0.979
C17—H171 1.001 C32—H323 0.969
C17—H172 0.996 C32—H322 0.975
C18—C19 1.559 (2) C32—H321 0.982
O1—C2—C3 116.89 (16) O20—C19—C31 105.61 (13)
O1—C2—C9 120.99 (16) C25—C19—C31 112.13 (14)
C3—C2—C9 122.07 (15) C19—O20—C21 115.62 (12)
C2—C3—C4 121.53 (16) C9—C21—O20 121.81 (15)
C2—C3—C8 118.50 (16) C9—C21—C22 122.22 (16)
C4—C3—C8 119.73 (17) O20—C21—C22 115.80 (15)
C3—C4—C5 119.91 (18) C13—C22—C21 118.67 (16)
C3—C4—H41 120.2 C13—C22—C23 122.24 (15)
C5—C4—H41 119.9 C21—C22—C23 116.14 (15)
C4—C5—C6 120.00 (19) C18—C23—C22 103.24 (13)
C4—C5—H51 119.1 C18—C23—C24 112.94 (14)
C6—C5—H51 120.9 C22—C23—C24 110.36 (14)
C5—C6—C7 120.37 (19) C18—C23—H231 110.6
C5—C6—H61 120.2 C22—C23—H231 109.6
C7—C6—H61 119.4 C24—C23—H231 109.9
C6—C7—C8 119.9 (2) C23—C24—C15 108.64 (14)
C6—C7—H71 120.2 C23—C24—H241 110.7
C8—C7—H71 119.9 C15—C24—H241 109.7
C3—C8—C7 120.02 (19) C23—C24—H242 110.5
C3—C8—H81 119.9 C15—C24—H242 108.7
C7—C8—H81 120.1 H241—C24—H242 108.4
C2—C9—C10 119.22 (15) C19—C25—C26 116.47 (15)
C2—C9—C21 124.97 (16) C19—C25—H251 106.8
C10—C9—C21 115.68 (15) C26—C25—H251 108.8
C9—C10—O11 120.83 (16) C19—C25—H252 107.8
C9—C10—C12 122.15 (16) C26—C25—H252 108.3
O11—C10—C12 116.94 (16) H251—C25—H252 108.4
C10—O11—H111 109.2 C25—C26—C27 111.43 (16)
C10—C12—C13 119.00 (16) C25—C26—H261 109.8
C10—C12—H121 120.7 C27—C26—H261 109.3
C13—C12—H121 120.2 C25—C26—H262 109.7
C12—C13—O14 118.03 (15) C27—C26—H262 109.1
C12—C13—C22 120.50 (16) H261—C26—H262 107.4
O14—C13—C22 121.31 (16) C26—C27—C28 127.51 (18)
C13—O14—C15 117.10 (13) C26—C27—H271 114.7
O14—C15—C16 110.88 (14) C28—C27—H271 117.8
O14—C15—C24 109.24 (14) C27—C28—C29 121.68 (18)
C16—C15—C24 108.97 (14) C27—C28—C30 123.77 (18)
O14—C15—C32 103.92 (14) C29—C28—C30 114.55 (17)
C16—C15—C32 112.01 (15) C28—C29—H291 110.1
C24—C15—C32 111.74 (15) C28—C29—H292 110.3
C15—C16—C17 116.82 (14) H291—C29—H292 109.4
C15—C16—H161 109.1 C28—C29—H293 109.9
C17—C16—H161 108.3 H291—C29—H293 109.0
C15—C16—H162 105.6 H292—C29—H293 108.0
C17—C16—H162 108.1 C28—C30—H301 110.0
H161—C16—H162 108.7 C28—C30—H302 109.5
C16—C17—C18 113.52 (14) H301—C30—H302 108.5
C16—C17—H171 109.4 C28—C30—H303 111.4
C18—C17—H171 108.8 H301—C30—H303 107.1
C16—C17—H172 108.9 H302—C30—H303 110.3
C18—C17—H172 109.1 C19—C31—H311 109.0
H171—C17—H172 106.9 C19—C31—H312 109.6
C17—C18—C19 116.21 (14) H311—C31—H312 108.8
C17—C18—C23 108.18 (14) C19—C31—H313 109.2
C19—C18—C23 106.99 (13) H311—C31—H313 110.3
C17—C18—H181 108.4 H312—C31—H313 109.9
C19—C18—H181 107.7 C15—C32—H323 109.1
C23—C18—H181 109.2 C15—C32—H322 112.2
C18—C19—O20 111.90 (13) H323—C32—H322 108.1
C18—C19—C25 108.74 (14) C15—C32—H321 109.6
O20—C19—C25 104.37 (13) H323—C32—H321 108.5
C18—C19—C31 113.70 (14) H322—C32—H321 109.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H181···O1i 1.00 2.60 3.563 (3) 162
O11—H111···O1 0.87 1.78 2.551 (3) 145

Symmetry code: (i) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2392).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Awang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M. T. & Gueritte, F. (2010). Bioorg. Med. Chem. 18, 7873–7877. [DOI] [PubMed]
  4. Bala, K. R. & Seshadri, T. R. (1971). Phytochemistry, 10, 1131–1134.
  5. Bandaranayak, W. M., Selliah, S. S. & Sultanbawa, M. U. S. (1975). Phytochemistry, 14, 265–269.
  6. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  7. Ee, G. C. L., Lim, C. K., Cheow, Y. L. & Sukari, M. A. (2005a). Malays. J. Sci. 24, 183–185.
  8. Ee, G. C. L., Lim, C. K., Rahmat, A. & Lee, H. L. (2005b). Trop. Biomed. 22., 99–102. [PubMed]
  9. Hua, S.-Z., Wang, X.-B., Luo, J.-G., Wang, J.-S. & Kong, L.-Y. (2008). Tetrahedron Lett. 49, 5658–5661.
  10. Huerta-Reyes, M., Basualdo Mdel, C., Abe, F., Jimenez-Estrada, M., Soler, C. & Reyes-Chilpa, R. (2004). Biol. Pharm. Bull. 27., 1471–1475. [DOI] [PubMed]
  11. Liu, K.-Y., Gao, W.-Y., Zhang, T.-J., Chen, H.-X. & Zhou, B. (2005). Acta Cryst. E61, o391–o392.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Mazumder, R., Dastidar, S. G., Basu, S. P., Mazumder, A. & Singh, S. K. (2004). Phytother. Res. 18, 824–826. [DOI] [PubMed]
  14. Morel, C., Guilet, D., Oger, J. M., Seraphin, D., Sevenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). Phytochemistry, 50., 1243–1247.
  15. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  16. Pinto, D. C. G., Fuzzati, N., Pazmino, X. C. & Hostettmann, K. (1994). Phytochemistry, 3 . 875-878. [DOI] [PubMed]
  17. Verotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867–2879. [DOI] [PubMed]
  18. Walia, S. & Mukerjee, S. K. (1984). Phytochemistry, 23, 1816–1817.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010756/kp2392sup1.cif

e-68-o1091-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010756/kp2392Isup2.hkl

e-68-o1091-Isup2.hkl (272KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES