Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1097. doi: 10.1107/S1600536812010318

7-Benzyl-3-(4-fluoro­phen­yl)-2-propyl­amino-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

Hai-Jun Hu a, Hong Chen b,*
PMCID: PMC3344049  PMID: 22589958

Abstract

In the title compound, C25H25FN4OS, the thienopyrimidine fused-ring system is close to planar (r.m.s. deviation = 0.0089 Å), with a maximum deviation of 0.0261 (17) Å for the N atom adjacent to the benzene ring. This thienopyrimidine fused-ring system forms dihedral angles of 64.73 (3) and 81.56 (5)° with the adjacent benzyl and fluoro­phenyl rings, respectively. Inter­molecular N—H⋯F and C—H⋯F hydrogen bonding, as well as C—F⋯π inter­actions [F⋯centroid = 3.449 (3) Å; C—F⋯centroid = 91.87 (15)°], help to stabilize the crystal structure.

Related literature  

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Mavrova et al. (2010). For similar crystal structures, see: Xie et al. (2008); Chen et al. (2011). graphic file with name e-68-o1097-scheme1.jpg

Experimental  

Crystal data  

  • C25H25FN4OS

  • M r = 448.55

  • Orthorhombic, Inline graphic

  • a = 17.921 (7) Å

  • b = 18.427 (7) Å

  • c = 27.114 (10) Å

  • V = 8954 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.26 × 0.25 × 0.23 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.955, T max = 0.960

  • 46089 measured reflections

  • 5152 independent reflections

  • 4234 reflections with I > 2σ(I)

  • R int = 0.107

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.194

  • S = 1.05

  • 5152 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010318/gw2115sup1.cif

e-68-o1097-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010318/gw2115Isup2.hkl

e-68-o1097-Isup2.hkl (252.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010318/gw2115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24B⋯F1i 0.97 2.66 3.258 (5) 121
C25—H25A⋯F1i 0.96 2.56 3.096 (5) 116
N4—H4A⋯F1i 0.86 2.65 3.423 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (project No. 21102084), the Key Project of Hubei Provincial Department of Education, China (project No. D20091301) and the Doctoral Start-up Foundation of China Three Gorges University (project No. KJ2009B004).

supplementary crystallographic information

Comment

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Mavrova et al. 2010). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Chen et al., 2011; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, C25H25FN4OS, the thienopyrimidine fused-ring system is close to coplanar (r.m.s deviation = 0.0089 Å) with a maximum deviation of -0.0261 (17) Å for atom N(3). This ring system forms diherdral angles of 64.73 (3) and 81.56 (5)° with the adjacent 6-membered rings C1—C6 and C17—C22, respectively. Most bond lengths in the system fell in the range of single and double bonds, for example, the bond lengths of C(9)—C(10), C(13)—C(14) and C(16)—O(1) were in accordance with the double bond distances. Intermolecular N—H···F (N4—H4A···F1i with symmetry code: (i) 3/2 - x, y, -z) and C—H···F hydrogen bonding (C24—H24B···F1i and C25—H25A···F1i), as well as C—F···π interactions (C20—F1···Cg1 with Cg1 centroids of the C17—C18—C19—C20—C21 ring), helps to stabilize the crystal structure.

Experimental

1-fluoro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (2 mmol) in anhydrous CH2Cl2 (10 ml) at room temperature. When the reaction mixture was left unstirred for 12 h at 273–278 k, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. Propan-1-amine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and anhydrous EtOH (10 ml) with several drops of EtONa (in EtOH) was added to the mixture. The mixture was stirred for another 6–8 h at room temperature. The solution was condensed and the residual was recrystallized from EtOH to give the expected title compound as white crystals, 0.832 g (87%), M.p. 431–432 K; 1H NMR (CDCl3, 600 MHz) δ: 7.37–7.25 (m, 9H, Ar—H), 4.06 (br, 1H, NH), 3.72 (s, 2H, Ar—CH2), 3.59 (s, 2H, NCH2-thiophene), 3.31 (m, 2H, NHCH2), 2.98 (t, J = 5.1 Hz, 2H, NCH2CH2), 2.82 (t, J = 5.1 Hz, 2H, NCH2CH2), 1.50–1.48 (m, 2H, CH2CH3), 0.84 (t, J = 6.6 Hz, 3H, CH2CH3); IR (KBr) v: 3373 (N—H), 1673 (C=O), 1540, 1378, 696 cm-1; EI—MS m/z (%): 448 (M+, 15), 357 (16), 329 (100), 287 (26), 91 (72). Anal. calcd for C25H25FN4OS: C 66.94, H 5.62, N 12.49; found: C 66.71, H 5.50, N 12.23.

Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.96, 0.97 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Reaction scheme.

Crystal data

C25H25FN4OS F(000) = 3776
Mr = 448.55 Dx = 1.331 Mg m3
Orthorhombic, Ibca Melting point: 432 K
Hall symbol: -I 2b 2c Mo Kα radiation, λ = 0.71073 Å
a = 17.921 (7) Å θ = 2.2–27.5°
b = 18.427 (7) Å µ = 0.18 mm1
c = 27.114 (10) Å T = 296 K
V = 8954 (6) Å3 Block, white
Z = 16 0.26 × 0.25 × 0.23 mm

Data collection

Bruker SMART CCD diffractometer 5152 independent reflections
Radiation source: fine-focus sealed tube 4234 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.107
CCD Profile fitting scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→23
Tmin = 0.955, Tmax = 0.960 k = −23→23
46089 measured reflections l = −35→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.090P)2 + 9.9439P] where P = (Fo2 + 2Fc2)/3
5152 reflections (Δ/σ)max = 0.001
290 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.87109 (4) 0.17415 (4) 0.30237 (2) 0.0591 (2)
C1 0.46974 (17) 0.04644 (18) 0.32327 (13) 0.0698 (8)
H1 0.4418 0.0066 0.3132 0.084*
C2 0.50154 (17) 0.09137 (18) 0.28892 (11) 0.0674 (8)
H2 0.4948 0.0820 0.2555 0.081*
C3 0.54325 (15) 0.15022 (16) 0.30340 (10) 0.0571 (6)
H3 0.5640 0.1805 0.2796 0.068*
C4 0.55497 (13) 0.16516 (14) 0.35321 (9) 0.0496 (6)
C5 0.52218 (15) 0.11933 (16) 0.38753 (10) 0.0587 (7)
H5 0.5290 0.1282 0.4210 0.070*
C6 0.47947 (17) 0.06071 (18) 0.37275 (12) 0.0673 (8)
H6 0.4573 0.0309 0.3962 0.081*
C7 0.60106 (14) 0.22989 (15) 0.36911 (11) 0.0583 (7)
H7A 0.5969 0.2669 0.3438 0.070*
H7B 0.5792 0.2495 0.3990 0.070*
C8 0.72121 (13) 0.19589 (15) 0.33405 (10) 0.0530 (6)
H8A 0.7181 0.2345 0.3098 0.064*
H8B 0.6990 0.1526 0.3200 0.064*
C9 0.80136 (13) 0.18162 (14) 0.34679 (9) 0.0495 (6)
C10 0.82718 (13) 0.17246 (13) 0.39342 (9) 0.0452 (5)
C11 0.77549 (13) 0.17373 (15) 0.43661 (9) 0.0522 (6)
H11A 0.7811 0.2191 0.4543 0.063*
H11B 0.7877 0.1343 0.4589 0.063*
C12 0.69484 (14) 0.16574 (15) 0.41885 (9) 0.0520 (6)
H12A 0.6863 0.1165 0.4076 0.062*
H12B 0.6608 0.1756 0.4458 0.062*
C13 0.90652 (12) 0.16038 (12) 0.39418 (9) 0.0452 (5)
C14 0.93774 (13) 0.15967 (14) 0.34782 (9) 0.0492 (6)
C15 1.05433 (13) 0.13502 (14) 0.37363 (9) 0.0513 (6)
C16 0.95394 (12) 0.14756 (13) 0.43557 (9) 0.0445 (5)
C17 1.07929 (12) 0.11374 (13) 0.46200 (9) 0.0444 (5)
C18 1.11037 (14) 0.16664 (13) 0.49144 (10) 0.0507 (6)
H18 1.0994 0.2153 0.4859 0.061*
C19 1.15808 (14) 0.14701 (16) 0.52937 (10) 0.0574 (6)
H19 1.1794 0.1819 0.5498 0.069*
C20 1.17280 (15) 0.07522 (17) 0.53586 (10) 0.0605 (7)
C21 1.14149 (17) 0.02195 (16) 0.50825 (13) 0.0688 (8)
H21 1.1518 −0.0266 0.5147 0.083*
C22 1.09393 (16) 0.04143 (14) 0.47039 (12) 0.0615 (7)
H22 1.0720 0.0060 0.4507 0.074*
C23 1.15905 (18) 0.1213 (2) 0.31582 (13) 0.0810 (10)
H23A 1.1625 0.1710 0.3043 0.097*
H23B 1.1256 0.0955 0.2938 0.097*
C24 1.2338 (2) 0.0875 (2) 0.31314 (14) 0.0900 (11)
H24A 1.2548 0.0963 0.2807 0.108*
H24B 1.2662 0.1104 0.3372 0.108*
C25 1.2322 (3) 0.0086 (2) 0.32243 (17) 0.1213 (17)
H25A 1.2107 −0.0005 0.3542 0.182*
H25B 1.2822 −0.0102 0.3216 0.182*
H25C 1.2028 −0.0149 0.2975 0.182*
N1 0.68111 (11) 0.21671 (11) 0.37846 (8) 0.0519 (5)
N2 1.01070 (11) 0.14831 (13) 0.33586 (8) 0.0560 (5)
N3 1.02934 (10) 0.13358 (11) 0.42237 (7) 0.0471 (5)
N4 1.12699 (12) 0.12111 (16) 0.36574 (9) 0.0667 (7)
H4A 1.1554 0.1119 0.3905 0.080*
O1 0.93579 (10) 0.14699 (11) 0.47917 (6) 0.0568 (5)
F1 1.22046 (12) 0.05586 (13) 0.57255 (7) 0.0979 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0455 (4) 0.0870 (5) 0.0447 (4) 0.0112 (3) −0.0047 (3) 0.0065 (3)
C1 0.0575 (16) 0.0736 (19) 0.078 (2) −0.0005 (14) −0.0060 (15) −0.0112 (16)
C2 0.0616 (16) 0.090 (2) 0.0500 (15) 0.0039 (16) −0.0082 (13) −0.0146 (14)
C3 0.0490 (13) 0.0763 (17) 0.0460 (13) 0.0092 (12) −0.0013 (11) 0.0003 (12)
C4 0.0362 (11) 0.0627 (14) 0.0499 (13) 0.0181 (10) −0.0067 (10) −0.0054 (11)
C5 0.0524 (14) 0.0802 (18) 0.0435 (13) 0.0193 (13) −0.0041 (11) −0.0007 (12)
C6 0.0564 (16) 0.0786 (19) 0.0668 (18) 0.0092 (14) 0.0029 (14) 0.0103 (15)
C7 0.0418 (12) 0.0654 (16) 0.0677 (17) 0.0201 (12) −0.0108 (12) −0.0123 (13)
C8 0.0432 (12) 0.0642 (15) 0.0516 (14) 0.0114 (11) −0.0092 (11) 0.0023 (11)
C9 0.0403 (12) 0.0592 (14) 0.0489 (13) 0.0082 (10) −0.0050 (10) 0.0013 (11)
C10 0.0392 (11) 0.0506 (12) 0.0457 (12) 0.0101 (9) −0.0050 (9) −0.0048 (10)
C11 0.0420 (12) 0.0700 (16) 0.0447 (13) 0.0140 (11) −0.0056 (10) −0.0060 (11)
C12 0.0425 (12) 0.0669 (15) 0.0465 (13) 0.0120 (11) −0.0024 (10) −0.0080 (11)
C13 0.0380 (11) 0.0518 (12) 0.0457 (12) 0.0073 (9) −0.0039 (9) −0.0040 (10)
C14 0.0401 (11) 0.0596 (14) 0.0478 (13) 0.0083 (10) −0.0062 (10) 0.0014 (11)
C15 0.0398 (12) 0.0647 (15) 0.0493 (13) 0.0093 (11) 0.0002 (10) −0.0035 (11)
C16 0.0363 (11) 0.0488 (12) 0.0484 (13) 0.0071 (9) −0.0037 (9) −0.0081 (10)
C17 0.0348 (10) 0.0525 (13) 0.0458 (12) 0.0037 (9) −0.0066 (9) −0.0040 (10)
C18 0.0453 (12) 0.0495 (13) 0.0572 (15) 0.0005 (10) −0.0047 (11) −0.0053 (11)
C19 0.0449 (13) 0.0731 (17) 0.0542 (15) −0.0050 (12) −0.0077 (11) −0.0152 (13)
C20 0.0452 (13) 0.088 (2) 0.0485 (14) 0.0082 (13) −0.0105 (11) 0.0052 (13)
C21 0.0661 (17) 0.0546 (15) 0.086 (2) 0.0117 (13) −0.0186 (16) 0.0080 (15)
C22 0.0564 (15) 0.0500 (14) 0.0780 (19) 0.0051 (12) −0.0196 (14) −0.0104 (13)
C23 0.0612 (18) 0.112 (3) 0.070 (2) 0.0229 (18) 0.0134 (16) 0.0164 (19)
C24 0.083 (2) 0.121 (3) 0.066 (2) 0.025 (2) 0.0101 (18) 0.0016 (19)
C25 0.179 (5) 0.092 (3) 0.094 (3) 0.036 (3) −0.002 (3) −0.014 (2)
N1 0.0415 (10) 0.0570 (12) 0.0572 (12) 0.0142 (9) −0.0088 (9) −0.0070 (9)
N2 0.0419 (10) 0.0796 (15) 0.0465 (11) 0.0110 (10) −0.0011 (9) 0.0005 (10)
N3 0.0370 (9) 0.0595 (12) 0.0448 (10) 0.0102 (8) −0.0067 (8) −0.0066 (9)
N4 0.0412 (11) 0.1052 (19) 0.0538 (13) 0.0170 (12) −0.0007 (9) 0.0013 (13)
O1 0.0460 (9) 0.0815 (13) 0.0428 (9) 0.0111 (9) −0.0057 (7) −0.0078 (8)
F1 0.0855 (13) 0.1396 (19) 0.0686 (12) 0.0214 (13) −0.0338 (10) 0.0128 (11)

Geometric parameters (Å, º)

S1—C14 1.737 (2) C13—C16 1.427 (3)
S1—C9 1.741 (3) C14—N2 1.363 (3)
C1—C2 1.370 (5) C15—N2 1.312 (3)
C1—C6 1.378 (5) C15—N4 1.344 (3)
C1—H1 0.9300 C15—N3 1.395 (3)
C2—C3 1.374 (4) C16—O1 1.226 (3)
C2—H2 0.9300 C16—N3 1.421 (3)
C3—C4 1.394 (4) C17—C18 1.377 (3)
C3—H3 0.9300 C17—C22 1.377 (3)
C4—C5 1.387 (4) C17—N3 1.446 (3)
C4—C7 1.513 (4) C18—C19 1.385 (4)
C5—C6 1.383 (4) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.360 (4)
C6—H6 0.9300 C19—H19 0.9300
C7—N1 1.477 (3) C20—F1 1.359 (3)
C7—H7A 0.9700 C20—C21 1.356 (4)
C7—H7B 0.9700 C21—C22 1.382 (4)
C8—N1 1.454 (3) C21—H21 0.9300
C8—C9 1.501 (3) C22—H22 0.9300
C8—H8A 0.9700 C23—N4 1.471 (4)
C8—H8B 0.9700 C23—C24 1.479 (5)
C9—C10 1.357 (3) C23—H23A 0.9700
C10—C13 1.439 (3) C23—H23B 0.9700
C10—C11 1.493 (3) C24—C25 1.476 (6)
C11—C12 1.531 (3) C24—H24A 0.9700
C11—H11A 0.9700 C24—H24B 0.9700
C11—H11B 0.9700 C25—H25A 0.9600
C12—N1 1.464 (3) C25—H25B 0.9600
C12—H12A 0.9700 C25—H25C 0.9600
C12—H12B 0.9700 N4—H4A 0.8600
C13—C14 1.376 (3)
C14—S1—C9 90.85 (12) C13—C14—S1 111.54 (18)
C2—C1—C6 119.6 (3) N2—C15—N4 119.3 (2)
C2—C1—H1 120.2 N2—C15—N3 123.5 (2)
C6—C1—H1 120.2 N4—C15—N3 117.3 (2)
C3—C2—C1 120.6 (3) O1—C16—N3 119.6 (2)
C3—C2—H2 119.7 O1—C16—C13 127.0 (2)
C1—C2—H2 119.7 N3—C16—C13 113.5 (2)
C2—C3—C4 121.0 (3) C18—C17—C22 120.8 (2)
C2—C3—H3 119.5 C18—C17—N3 120.1 (2)
C4—C3—H3 119.5 C22—C17—N3 119.0 (2)
C5—C4—C3 117.8 (3) C17—C18—C19 119.7 (2)
C5—C4—C7 121.3 (2) C17—C18—H18 120.2
C3—C4—C7 120.9 (3) C19—C18—H18 120.2
C6—C5—C4 121.0 (3) C20—C19—C18 118.0 (2)
C6—C5—H5 119.5 C20—C19—H19 121.0
C4—C5—H5 119.5 C18—C19—H19 121.0
C1—C6—C5 120.1 (3) F1—C20—C21 118.3 (3)
C1—C6—H6 120.0 F1—C20—C19 118.2 (3)
C5—C6—H6 120.0 C21—C20—C19 123.5 (2)
N1—C7—C4 116.7 (2) C20—C21—C22 118.5 (3)
N1—C7—H7A 108.1 C20—C21—H21 120.7
C4—C7—H7A 108.1 C22—C21—H21 120.7
N1—C7—H7B 108.1 C21—C22—C17 119.5 (2)
C4—C7—H7B 108.1 C21—C22—H22 120.3
H7A—C7—H7B 107.3 C17—C22—H22 120.3
N1—C8—C9 109.2 (2) N4—C23—C24 113.5 (3)
N1—C8—H8A 109.8 N4—C23—H23A 108.9
C9—C8—H8A 109.8 C24—C23—H23A 108.9
N1—C8—H8B 109.8 N4—C23—H23B 108.9
C9—C8—H8B 109.8 C24—C23—H23B 108.9
H8A—C8—H8B 108.3 H23A—C23—H23B 107.7
C10—C9—C8 124.2 (2) C25—C24—C23 112.9 (4)
C10—C9—S1 112.95 (18) C25—C24—H24A 109.0
C8—C9—S1 122.80 (18) C23—C24—H24A 109.0
C9—C10—C13 111.7 (2) C25—C24—H24B 109.0
C9—C10—C11 121.1 (2) C23—C24—H24B 109.0
C13—C10—C11 127.2 (2) H24A—C24—H24B 107.8
C10—C11—C12 109.7 (2) C24—C25—H25A 109.5
C10—C11—H11A 109.7 C24—C25—H25B 109.5
C12—C11—H11A 109.7 H25A—C25—H25B 109.5
C10—C11—H11B 109.7 C24—C25—H25C 109.5
C12—C11—H11B 109.7 H25A—C25—H25C 109.5
H11A—C11—H11B 108.2 H25B—C25—H25C 109.5
N1—C12—C11 109.4 (2) C8—N1—C12 111.55 (19)
N1—C12—H12A 109.8 C8—N1—C7 112.4 (2)
C11—C12—H12A 109.8 C12—N1—C7 113.4 (2)
N1—C12—H12B 109.8 C15—N2—C14 114.5 (2)
C11—C12—H12B 109.8 C15—N3—C16 122.68 (19)
H12A—C12—H12B 108.2 C15—N3—C17 120.66 (19)
C14—C13—C16 118.3 (2) C16—N3—C17 116.58 (19)
C14—C13—C10 113.0 (2) C15—N4—C23 121.6 (2)
C16—C13—C10 128.7 (2) C15—N4—H4A 119.2
N2—C14—C13 127.5 (2) C23—N4—H4A 119.2
N2—C14—S1 120.96 (19)
C6—C1—C2—C3 0.3 (5) N3—C17—C18—C19 179.9 (2)
C1—C2—C3—C4 0.8 (4) C17—C18—C19—C20 0.4 (4)
C2—C3—C4—C5 −1.0 (4) C18—C19—C20—F1 179.0 (2)
C2—C3—C4—C7 179.9 (2) C18—C19—C20—C21 −2.2 (5)
C3—C4—C5—C6 0.2 (4) F1—C20—C21—C22 −179.0 (3)
C7—C4—C5—C6 179.3 (2) C19—C20—C21—C22 2.2 (5)
C2—C1—C6—C5 −1.1 (4) C20—C21—C22—C17 −0.5 (5)
C4—C5—C6—C1 0.9 (4) C18—C17—C22—C21 −1.2 (4)
C5—C4—C7—N1 87.2 (3) N3—C17—C22—C21 −179.9 (3)
C3—C4—C7—N1 −93.7 (3) N4—C23—C24—C25 67.6 (5)
N1—C8—C9—C10 14.6 (4) C9—C8—N1—C12 −49.8 (3)
N1—C8—C9—S1 −166.08 (19) C9—C8—N1—C7 −178.5 (2)
C14—S1—C9—C10 −0.9 (2) C11—C12—N1—C8 69.8 (3)
C14—S1—C9—C8 179.7 (2) C11—C12—N1—C7 −162.1 (2)
C8—C9—C10—C13 −179.4 (2) C4—C7—N1—C8 65.3 (3)
S1—C9—C10—C13 1.3 (3) C4—C7—N1—C12 −62.4 (3)
C8—C9—C10—C11 2.0 (4) N4—C15—N2—C14 178.2 (3)
S1—C9—C10—C11 −177.38 (19) N3—C15—N2—C14 −1.0 (4)
C9—C10—C11—C12 15.1 (3) C13—C14—N2—C15 1.7 (4)
C13—C10—C11—C12 −163.3 (2) S1—C14—N2—C15 −177.2 (2)
C10—C11—C12—N1 −48.8 (3) N2—C15—N3—C16 −0.9 (4)
C9—C10—C13—C14 −1.0 (3) N4—C15—N3—C16 179.8 (2)
C11—C10—C13—C14 177.5 (2) N2—C15—N3—C17 175.8 (2)
C9—C10—C13—C16 −179.1 (2) N4—C15—N3—C17 −3.5 (4)
C11—C10—C13—C16 −0.5 (4) O1—C16—N3—C15 −178.5 (2)
C16—C13—C14—N2 −0.4 (4) C13—C16—N3—C15 2.2 (3)
C10—C13—C14—N2 −178.7 (2) O1—C16—N3—C17 4.7 (3)
C16—C13—C14—S1 178.59 (18) C13—C16—N3—C17 −174.7 (2)
C10—C13—C14—S1 0.3 (3) C18—C17—N3—C15 101.6 (3)
C9—S1—C14—N2 179.4 (2) C22—C17—N3—C15 −79.7 (3)
C9—S1—C14—C13 0.3 (2) C18—C17—N3—C16 −81.5 (3)
C14—C13—C16—O1 179.2 (2) C22—C17—N3—C16 97.2 (3)
C10—C13—C16—O1 −2.8 (4) N2—C15—N4—C23 0.8 (5)
C14—C13—C16—N3 −1.5 (3) N3—C15—N4—C23 −180.0 (3)
C10—C13—C16—N3 176.5 (2) C24—C23—N4—C15 −165.6 (3)
C22—C17—C18—C19 1.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C24—H24B···F1i 0.97 2.66 3.258 (5) 121
C25—H25A···F1i 0.96 2.56 3.096 (5) 116
N4—H4A···F1i 0.86 2.65 3.423 (3) 151

Symmetry code: (i) −x+5/2, y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2115).

References

  1. Amr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935–5942. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228. [DOI] [PMC free article] [PubMed]
  4. Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–833. [DOI] [PubMed]
  5. Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010318/gw2115sup1.cif

e-68-o1097-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010318/gw2115Isup2.hkl

e-68-o1097-Isup2.hkl (252.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010318/gw2115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES