Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1104–o1105. doi: 10.1107/S160053681201094X

(2-Oxo-2H-benzo[h]chromen-4-yl)methyl morpholine-4-carbodithio­ate

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, Gurvinder Kour a, K Mahesh Kumar b, N M Mahabaleshwaraiah b, O Kotresh b
PMCID: PMC3344054  PMID: 22589963

Abstract

In the title compound, C19H17NO3S2, the morpholine ring is in a chair conformation. In the coumarin ring system, the dihedral angle between the benzene and pyran rings is 3.9 (1)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into corrugated layers parallel to (102). The crystal packing also exhibits π–π inter­actions, with distances of 3.644 (1) and 3.677 (1) Å between the centroids of the benzene rings of neighbouring mol­ecules.

Related literature  

For the biological activity of coumarins, see: Kontogiorgis & Hadjipavlou-Litina (2004). For a related structure, see: Kumar et al. (2012). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1104-scheme1.jpg

Experimental  

Crystal data  

  • C19H17NO3S2

  • M r = 371.46

  • Monoclinic, Inline graphic

  • a = 13.0928 (4) Å

  • b = 11.6978 (3) Å

  • c = 11.3673 (3) Å

  • β = 99.232 (3)°

  • V = 1718.43 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.818, T max = 1.000

  • 18655 measured reflections

  • 3017 independent reflections

  • 2457 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.104

  • S = 1.05

  • 3017 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201094X/cv5260sup1.cif

e-68-o1104-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201094X/cv5260Isup2.hkl

e-68-o1104-Isup2.hkl (145KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201094X/cv5260Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3i 0.93 2.42 3.346 (3) 173
C18—H18A⋯O2ii 0.97 2.56 3.466 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

supplementary crystallographic information

Comment

Coumarins (2H-1-benzopyran-2-ones) form a distinct class of oxygen containing heterocycles and are widely distributed in nature. Coumarins represent a class of naturally and synthetically obtained compounds that possess a wide variety of biological activities. Specifically coumarins are reported to possess antiallergic, anticoagulant, antidiabetic activities and analgesic properties (Kontogiorgis & Hadjipavlou-Litina, 2004). In continuation of our interest on crystal structures study of coumarin derivatives (Kumar et al., 2012), we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987) and are in a good agreement with those in related structure (Kumar et al., 2012). The morpholine ring adopts a chair conformation. The dihedral angle bewteen the pyran and benzene rings in the coumarin fragment is 3.9 (1)°. Weak intermolecular C—H···O interactions (Table 1)link the molecules into corrugated layers parallel to (102) plane. The crystal packing exhibits π-π stacking interactions. The first of these is between the benzene ring C4/C5/C10-C13 and its symmetry-related partner at (1-x, 1-y, -z) with a distance of 3.644 (1) Å between the ring centroids. Another π-π interaction is between the benzene ring C4/C5/C10-C13 and the benzene ring C5-C10 at (1-x, 1-y,-z) with a distance of 3.677 (1) Å between the ring centroids.

Experimental

A mixture of 2.73g (0.01 mol) of 7,8-benzo- 4-bromomethyl coumarin and 2.00g (0.01 mol) of potassium salt of morpholine-1-dithiocarbomate in 30 ml dry alcohol was stirrer for 12 hours at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid was extracted twice with MDC –water mixture. The organic solvent was dried over CaCl2, evaporated the solvent and recrystallised from ethanol-chloroform. A slow evaporation technique was used to grow crystals suitable for diffraction studies in an ethanol-chloroform mixture. Yield=89%, m.p.-182-84oC. IR(KBr): 1717cm-1(C=O), 1423.8cm-1 (C=S), 849cm-1(C-N), 1111.7 (C-O-C).GCMS: m/e: 371.06. 1H- NMR(300MHz, CdCl3,δppm):2.81(s, 4H, C13 & C17-H), 1.73(s, 8H, C16,C17, C18 & C19-H), 4.32 (s,2H, C4-CH2), 7.26 (s,1H, C2-H), 7.45 (d,1H, C12-H), 7.63 (t,1H, C11-H), 7.66 (t,1H, C8-H), 7.91 (d,1H, C7-H), 7.97 (d,1H, C9-H), 8.47 (d,1H C6-H).Elemental analysis: C, 61.40; H, 4.56; N, 3.73; O, 12.90; S, 16.8 M.P.:

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Crystal data

C19H17NO3S2 F(000) = 776
Mr = 371.46 Dx = 1.436 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9000 reflections
a = 13.0928 (4) Å θ = 3.5–29.0°
b = 11.6978 (3) Å µ = 0.33 mm1
c = 11.3673 (3) Å T = 293 K
β = 99.232 (3)° Plate shaped, light yellow
V = 1718.43 (8) Å3 0.3 × 0.2 × 0.1 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3017 independent reflections
Radiation source: fine-focus sealed tube 2457 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 16.1049 pixels mm-1 θmax = 25.0°, θmin = 3.5°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.818, Tmax = 1.000 l = −13→13
18655 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.803P] where P = (Fo2 + 2Fc2)/3
3017 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.85592 (4) 0.20784 (5) 0.78872 (5) 0.04418 (18)
S2 0.82222 (5) 0.40595 (6) 0.61667 (6) 0.0577 (2)
O1 0.74719 (10) 0.50873 (12) 1.10256 (12) 0.0393 (3)
O2 0.90505 (12) 0.56115 (14) 1.08171 (15) 0.0528 (4)
O3 1.20360 (13) 0.26933 (17) 0.65798 (18) 0.0683 (5)
N1 0.98691 (14) 0.26938 (16) 0.65122 (16) 0.0461 (5)
C1 0.74297 (15) 0.35148 (17) 0.91788 (17) 0.0359 (5)
C2 0.82708 (16) 0.41668 (18) 0.95188 (18) 0.0399 (5)
H2 0.8838 0.4079 0.9128 0.048*
C3 0.83295 (16) 0.49940 (18) 1.04603 (19) 0.0392 (5)
C4 0.66310 (15) 0.43868 (17) 1.07426 (18) 0.0342 (4)
C5 0.58582 (15) 0.45029 (18) 1.14826 (18) 0.0375 (5)
C6 0.59575 (18) 0.5245 (2) 1.2473 (2) 0.0478 (6)
H6 0.6539 0.5708 1.2654 0.057*
C7 0.5195 (2) 0.5279 (2) 1.3166 (2) 0.0594 (7)
H7 0.5270 0.5758 1.3828 0.071*
C8 0.4307 (2) 0.4611 (2) 1.2901 (2) 0.0594 (7)
H8 0.3795 0.4654 1.3379 0.071*
C9 0.41879 (17) 0.3897 (2) 1.1947 (2) 0.0523 (6)
H9 0.3592 0.3456 1.1776 0.063*
C10 0.49592 (15) 0.38159 (18) 1.12088 (19) 0.0405 (5)
C11 0.48607 (16) 0.30730 (19) 1.0208 (2) 0.0460 (5)
H11 0.4257 0.2650 1.0002 0.055*
C12 0.56292 (16) 0.29700 (19) 0.9549 (2) 0.0426 (5)
H12 0.5549 0.2463 0.8910 0.051*
C13 0.65541 (15) 0.36174 (17) 0.98100 (18) 0.0346 (4)
C14 0.73585 (16) 0.2666 (2) 0.8168 (2) 0.0455 (5)
H14A 0.7022 0.3037 0.7445 0.055*
H14B 0.6916 0.2040 0.8334 0.055*
C15 0.89538 (16) 0.29882 (18) 0.67899 (18) 0.0389 (5)
C16 1.03585 (19) 0.3310 (3) 0.5620 (2) 0.0592 (7)
H16A 0.9953 0.3981 0.5349 0.071*
H16B 1.0386 0.2820 0.4937 0.071*
C17 1.1420 (2) 0.3656 (3) 0.6158 (3) 0.0657 (7)
H17A 1.1743 0.4058 0.5568 0.079*
H17B 1.1385 0.4175 0.6815 0.079*
C18 1.15784 (19) 0.2117 (2) 0.7477 (2) 0.0595 (7)
H18A 1.1555 0.2632 0.8142 0.071*
H18B 1.2004 0.1466 0.7770 0.071*
C19 1.05149 (17) 0.1718 (2) 0.7007 (2) 0.0521 (6)
H19A 1.0540 0.1152 0.6389 0.063*
H19B 1.0213 0.1364 0.7642 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0474 (3) 0.0374 (3) 0.0509 (3) 0.0035 (2) 0.0176 (3) −0.0012 (2)
S2 0.0595 (4) 0.0539 (4) 0.0601 (4) 0.0195 (3) 0.0114 (3) 0.0097 (3)
O1 0.0370 (8) 0.0371 (8) 0.0459 (8) −0.0050 (6) 0.0130 (6) −0.0069 (6)
O2 0.0448 (9) 0.0505 (10) 0.0661 (11) −0.0162 (8) 0.0178 (8) −0.0156 (8)
O3 0.0451 (10) 0.0716 (13) 0.0908 (13) 0.0030 (9) 0.0190 (9) 0.0225 (11)
N1 0.0415 (10) 0.0494 (11) 0.0487 (11) 0.0067 (9) 0.0109 (8) 0.0093 (9)
C1 0.0365 (11) 0.0320 (11) 0.0400 (11) 0.0015 (9) 0.0087 (9) −0.0001 (9)
C2 0.0394 (12) 0.0378 (12) 0.0455 (12) −0.0019 (10) 0.0159 (9) −0.0023 (9)
C3 0.0372 (11) 0.0357 (11) 0.0466 (12) −0.0024 (10) 0.0124 (9) 0.0001 (9)
C4 0.0310 (10) 0.0299 (10) 0.0423 (11) 0.0002 (8) 0.0074 (9) 0.0047 (9)
C5 0.0363 (11) 0.0339 (11) 0.0434 (11) 0.0075 (9) 0.0101 (9) 0.0071 (9)
C6 0.0471 (13) 0.0464 (13) 0.0523 (13) 0.0020 (11) 0.0157 (11) −0.0034 (11)
C7 0.0645 (17) 0.0640 (17) 0.0547 (15) 0.0105 (14) 0.0241 (12) −0.0039 (12)
C8 0.0524 (15) 0.0662 (17) 0.0668 (17) 0.0141 (13) 0.0317 (13) 0.0105 (14)
C9 0.0368 (12) 0.0556 (15) 0.0679 (16) 0.0036 (11) 0.0184 (11) 0.0114 (13)
C10 0.0320 (11) 0.0395 (12) 0.0513 (13) 0.0073 (9) 0.0104 (9) 0.0111 (10)
C11 0.0314 (11) 0.0433 (13) 0.0631 (15) −0.0039 (10) 0.0066 (10) 0.0032 (11)
C12 0.0373 (11) 0.0397 (12) 0.0505 (12) −0.0032 (10) 0.0059 (9) −0.0035 (10)
C13 0.0313 (10) 0.0315 (10) 0.0412 (11) 0.0013 (9) 0.0062 (8) 0.0034 (9)
C14 0.0392 (12) 0.0473 (13) 0.0521 (13) −0.0058 (10) 0.0142 (10) −0.0126 (10)
C15 0.0411 (12) 0.0394 (12) 0.0365 (11) 0.0011 (9) 0.0076 (9) −0.0043 (9)
C16 0.0541 (15) 0.0763 (18) 0.0482 (14) 0.0025 (13) 0.0117 (11) 0.0168 (13)
C17 0.0595 (16) 0.0668 (18) 0.0714 (17) −0.0074 (14) 0.0129 (13) 0.0187 (14)
C18 0.0513 (15) 0.0550 (16) 0.0717 (16) 0.0093 (12) 0.0079 (12) 0.0117 (13)
C19 0.0487 (14) 0.0452 (14) 0.0657 (15) 0.0080 (11) 0.0193 (12) 0.0051 (11)

Geometric parameters (Å, º)

S1—C15 1.778 (2) C7—H7 0.9300
S1—C14 1.791 (2) C8—C9 1.358 (4)
S2—C15 1.665 (2) C8—H8 0.9300
O1—C4 1.369 (2) C9—C10 1.416 (3)
O1—C3 1.385 (2) C9—H9 0.9300
O2—C3 1.206 (2) C10—C11 1.421 (3)
O3—C17 1.422 (3) C11—C12 1.353 (3)
O3—C18 1.432 (3) C11—H11 0.9300
N1—C15 1.333 (3) C12—C13 1.419 (3)
N1—C16 1.472 (3) C12—H12 0.9300
N1—C19 1.477 (3) C14—H14A 0.9700
C1—C2 1.344 (3) C14—H14B 0.9700
C1—C13 1.452 (3) C16—C17 1.482 (3)
C1—C14 1.511 (3) C16—H16A 0.9700
C2—C3 1.436 (3) C16—H16B 0.9700
C2—H2 0.9300 C17—H17A 0.9700
C4—C13 1.382 (3) C17—H17B 0.9700
C4—C5 1.422 (3) C18—C19 1.484 (3)
C5—C6 1.411 (3) C18—H18A 0.9700
C5—C10 1.418 (3) C18—H18B 0.9700
C6—C7 1.369 (3) C19—H19A 0.9700
C6—H6 0.9300 C19—H19B 0.9700
C7—C8 1.392 (4)
C15—S1—C14 104.92 (11) C11—C12—C13 121.5 (2)
C4—O1—C3 121.69 (16) C11—C12—H12 119.3
C17—O3—C18 109.50 (18) C13—C12—H12 119.3
C15—N1—C16 122.97 (19) C4—C13—C12 117.56 (18)
C15—N1—C19 126.25 (18) C4—C13—C1 117.83 (18)
C16—N1—C19 110.76 (18) C12—C13—C1 124.60 (19)
C2—C1—C13 119.11 (19) C1—C14—S1 116.03 (15)
C2—C1—C14 122.65 (18) C1—C14—H14A 108.3
C13—C1—C14 118.24 (18) S1—C14—H14A 108.3
C1—C2—C3 122.69 (19) C1—C14—H14B 108.3
C1—C2—H2 118.7 S1—C14—H14B 108.3
C3—C2—H2 118.7 H14A—C14—H14B 107.4
O2—C3—O1 116.48 (19) N1—C15—S2 124.86 (16)
O2—C3—C2 126.85 (19) N1—C15—S1 112.65 (15)
O1—C3—C2 116.66 (18) S2—C15—S1 122.47 (12)
O1—C4—C13 121.80 (17) N1—C16—C17 109.4 (2)
O1—C4—C5 115.18 (18) N1—C16—H16A 109.8
C13—C4—C5 123.01 (19) C17—C16—H16A 109.8
C6—C5—C10 119.38 (19) N1—C16—H16B 109.8
C6—C5—C4 123.2 (2) C17—C16—H16B 109.8
C10—C5—C4 117.41 (19) H16A—C16—H16B 108.2
C7—C6—C5 119.7 (2) O3—C17—C16 111.5 (2)
C7—C6—H6 120.2 O3—C17—H17A 109.3
C5—C6—H6 120.2 C16—C17—H17A 109.3
C6—C7—C8 121.3 (2) O3—C17—H17B 109.3
C6—C7—H7 119.4 C16—C17—H17B 109.3
C8—C7—H7 119.4 H17A—C17—H17B 108.0
C9—C8—C7 120.2 (2) O3—C18—C19 111.5 (2)
C9—C8—H8 119.9 O3—C18—H18A 109.3
C7—C8—H8 119.9 C19—C18—H18A 109.3
C8—C9—C10 120.8 (2) O3—C18—H18B 109.3
C8—C9—H9 119.6 C19—C18—H18B 109.3
C10—C9—H9 119.6 H18A—C18—H18B 108.0
C9—C10—C5 118.6 (2) N1—C19—C18 110.0 (2)
C9—C10—C11 122.2 (2) N1—C19—H19A 109.7
C5—C10—C11 119.20 (19) C18—C19—H19A 109.7
C12—C11—C10 121.2 (2) N1—C19—H19B 109.7
C12—C11—H11 119.4 C18—C19—H19B 109.7
C10—C11—H11 119.4 H19A—C19—H19B 108.2
C13—C1—C2—C3 −2.1 (3) C5—C4—C13—C12 3.8 (3)
C14—C1—C2—C3 178.4 (2) O1—C4—C13—C1 4.1 (3)
C4—O1—C3—O2 −176.30 (18) C5—C4—C13—C1 −175.22 (18)
C4—O1—C3—C2 3.2 (3) C11—C12—C13—C4 −2.0 (3)
C1—C2—C3—O2 −179.9 (2) C11—C12—C13—C1 177.0 (2)
C1—C2—C3—O1 0.7 (3) C2—C1—C13—C4 −0.2 (3)
C3—O1—C4—C13 −5.7 (3) C14—C1—C13—C4 179.26 (19)
C3—O1—C4—C5 173.65 (17) C2—C1—C13—C12 −179.2 (2)
O1—C4—C5—C6 −2.7 (3) C14—C1—C13—C12 0.3 (3)
C13—C4—C5—C6 176.6 (2) C2—C1—C14—S1 27.7 (3)
O1—C4—C5—C10 178.51 (17) C13—C1—C14—S1 −151.80 (16)
C13—C4—C5—C10 −2.2 (3) C15—S1—C14—C1 −92.49 (18)
C10—C5—C6—C7 1.0 (3) C16—N1—C15—S2 1.3 (3)
C4—C5—C6—C7 −177.8 (2) C19—N1—C15—S2 −177.02 (18)
C5—C6—C7—C8 −1.3 (4) C16—N1—C15—S1 179.49 (18)
C6—C7—C8—C9 0.7 (4) C19—N1—C15—S1 1.2 (3)
C7—C8—C9—C10 0.2 (4) C14—S1—C15—N1 177.39 (16)
C8—C9—C10—C5 −0.4 (3) C14—S1—C15—S2 −4.34 (16)
C8—C9—C10—C11 179.6 (2) C15—N1—C16—C17 126.5 (2)
C6—C5—C10—C9 −0.1 (3) C19—N1—C16—C17 −55.0 (3)
C4—C5—C10—C9 178.67 (19) C18—O3—C17—C16 −60.7 (3)
C6—C5—C10—C11 179.8 (2) N1—C16—C17—O3 58.7 (3)
C4—C5—C10—C11 −1.4 (3) C17—O3—C18—C19 59.6 (3)
C9—C10—C11—C12 −176.9 (2) C15—N1—C19—C18 −127.2 (2)
C5—C10—C11—C12 3.2 (3) C16—N1—C19—C18 54.3 (3)
C10—C11—C12—C13 −1.5 (3) O3—C18—C19—N1 −56.7 (3)
O1—C4—C13—C12 −176.88 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O3i 0.93 2.42 3.346 (3) 173
C18—H18A···O2ii 0.97 2.56 3.466 (3) 155

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5260).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2004). Bioorg. Med. Chem. Lett. 14, 611–614. [DOI] [PubMed]
  4. Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201094X/cv5260sup1.cif

e-68-o1104-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201094X/cv5260Isup2.hkl

e-68-o1104-Isup2.hkl (145KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201094X/cv5260Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES