Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1106. doi: 10.1107/S1600536812011002

4-[2-(Benzyl­amino)­phen­yl]-2,6-dimethyl­quinoline N-oxide

Mario Geffe a, Dieter Schollmeyer a, Heiner Detert a,*
PMCID: PMC3344055  PMID: 22589964

Abstract

The title compound, C24H22N2O, was obtained in a two-step procedure from the corresponding 4-(2-iodo­phen­yl)quinoline. The quinoline system is approximately planar [maximum deviation from the least-squares plane = 0.021 (2) Å]. The planes of the quinoline system and the phenyl ring subtend a dihedral angle of 78.08 (8)°. In the crystal, pairs of mol­ecules are connected via a center of symmetry and linked by a pair of angular N—H⋯O hydrogen bond. These dimers form columns oriented along the c axis.

Related literature  

For aminations of iodo­lium salts, see: Letessier et al. (2011a,b ), Letessier & Detert (2012). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007); Ivashevskaja et al. (2002); Fahl­quist et al. (2006). For heteroanalogous carbazoles, see: Dassonneville et al. (2010, 2011); Nissen & Detert (2011). For Buchwald-Hartwig amination, see: Hartwig (1999); Muci & Buchwald (2002). For twist of o-substituted biaryls, see: Miao et al. (2009); Moschel et al. (2011).graphic file with name e-68-o1106-scheme1.jpg

Experimental  

Crystal data  

  • C24H22N2O

  • M r = 354.44

  • Monoclinic, Inline graphic

  • a = 10.1656 (3) Å

  • b = 14.1135 (5) Å

  • c = 12.9372 (4) Å

  • β = 91.547 (3)°

  • V = 1855.46 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 193 K

  • 0.26 × 0.18 × 0.18 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • 18005 measured reflections

  • 3120 independent reflections

  • 2803 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.154

  • S = 1.10

  • 3120 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA ; data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011002/bt5844sup1.cif

e-68-o1106-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011002/bt5844Isup2.hkl

e-68-o1106-Isup2.hkl (153.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011002/bt5844Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O24i 0.96 2.03 2.7852 (17) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.

supplementary crystallographic information

Comment

As part of a larger project on the synthesis of heteroanalogous carbazoles (Dassonneville et al. (2011), Dassonneville et al. (2010); Nissen & Detert (2011) iodolium salts became interesting as intermediates. Their twofold Buchwald-Hartwig amination with primary amines results in the formation of the pyrrole ring leading to carbazoles (Letessier et al. (2011a)) or carbolines (Letessier et al. (2011b), Letessier & Detert (2012)). The attempted formation of a benzo-quinolino-annulated iodolium salt via oxidation of the 4-(2-iodophenyl)quinoline and electrophilic ring closure failed. A mixture of two compounds, probably the iodosophenyl-quinoline and the iodophenyl-quinoline-N-oxide was obtained instead. Upon standing in chloroform solution, the former slowly isomerizes to the latter compound. Buchwald-Hartwig amination of the inseparable mixture with benzyl amine and Pd2(dba)3/Xantphos as catalytic system results in the formation of the title compound (ca 35%).

The title compound crystallizes as a centrosymmetric dimer stabilized by hydrogen bonding from the amino group to the N-oxide. The dimers are arranged in independent columns along the c axis. The bonds N7—H7 (0.9629 Å) and H7—O24 (2.03 Å) open an angle of 134°.

The quinoline framework is essentially planar with a maximal deviation of 0.021 (2) Å at C17 from the mean square plane. The dihedral angle between the mean planes of the quinoline and the adjacent phenyl ring is 64.61 (6)° and the mean planes of the phenyl rings open an angle of 78.08 (8)°. The amino group is coplanar with the mean plane of the phenyl ring: C8—N7-phenyl: 0.128 (2)°.

Experimental

2,6-Dimethyl-4-(2-iodophenyl)quinoline (53.9 mg, 0.15 mmol) was dissolved in 1.5 ml of dichloromethane in a flame-dried Schlenk tube and at 273 K. 11.6 µL(17.1 mg, 0.15 mmol) of trifluoromethane sulfonic acid were added. While stirring and cooling, mCPBA (38.8 mg, 0.23 mmol) was added. After 10 min trifluoromethansulfonic acid (23.3 µL, 34.2 mg, 0.3 mmol) was added and stirring continued for 30 min. The solvent was removed in vacuo, diethyl ether (5 ml) was added. An oily layer separated which crystallized upon standing for 8 h. The crystalline solid was isolated by suction filtration and washed with cold ether. Yield: 27.8 mg of a mixture of two compounds (ca 1: 0.6). In a Schlenk tube, this product (380 mg) was suspended in toluene (10 ml) and benzyl amine (96.4 mg, 0.9 mmol), Pd2(dba)3 (27.6 mg, 0.03 mmol), Xanthphos (52.2 mg, 0.09 mmol) and Cs2CO3 (684.3 mg, 2.1 mmol) were added. The mixture was stirred over night at 373 K, cooled, filtered through celite and the filter cake was washed with ethyl acetate (50 ml). The pooled organic solutions were washed with water, brine, and dried over MgSO4. After removal of the solvents in vacuo, the residue was purified by chromatography on Al2O3 with gradient elution starting with petroleum ether, followed by ethyl acetate and finally methanol. yield: 124.2 mg (0.35 mmol) of the title compound (Rf = 0.68 SiO2, ethyl acetate/methanol = 1/1) as yellow crystals with m. p. = 497 - 499 K. 4-(2-(Benzylamino)phenyl-2,6-dimethylquinoline (60 mg, 0.18 mmol, colorless solid, m. p. = 448 - 450 K) was isolated as a first fraction (Rf = 0.56 (SiO2, petroleum ether/ethyl acetate = 1/1)

Refinement

All hydrogen atom were located in a difference Fourier map. Nevertheless, they were refined using a riding model with N—H = 0.96 Å, C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom) and with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C24H22N2O F(000) = 752
Mr = 354.44 Dx = 1.269 Mg m3
Monoclinic, P21/n Melting point: 449 K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.54178 Å
a = 10.1656 (3) Å Cell parameters from 27155 reflections
b = 14.1135 (5) Å θ = 3.1–68.2°
c = 12.9372 (4) Å µ = 0.61 mm1
β = 91.547 (3)° T = 193 K
V = 1855.46 (11) Å3 Needle, yellow
Z = 4 0.26 × 0.18 × 0.18 mm

Data collection

Stoe IPDS 2T diffractometer 2803 reflections with I > 2σ(I)
Radiation source: Incoatec microSource Cu Rint = 0.034
X-ray mirror monochromator θmax = 66.5°, θmin = 4.6°
Detector resolution: 6.67 pixels mm-1 h = −12→12
rotation method scans k = −16→16
18005 measured reflections l = −13→13
3120 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.099P)2 + 0.2406P] where P = (Fo2 + 2Fc2)/3
3120 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.71 (d, 3J = 8.9 Hz, 1 H), 7.59 (dd, 3J = 8.9 Hz, 4 J = 1.7 Hz, 1 H), 7.43 (s, 1 H), 7.36 - 7.16 (m, 7 H), 7.11 (dd, 3 J = 7.4 Hz, 4J = 1.5 Hz, 1 H), 6.84 (t, 3J = 7.4 Hz, 1 H), 6.75 (d, 3J = 8.2 Hz, 1 H), 4.30 (s, 2 H, CH2), 2.71 (s, 3 H, CH3), 2.47 (s, 3 H, CH3).13C-NMR (75 MHz, CDCl3): δ = 145.6, 144.0, 140.4, 139.7, 137.0, 133.4, 131.8, 130.3, 129.4, 128.3 (2 C), 128.0, 126.7 (2 C), 126.5, 125.5, 125.1, 121.8, 119.4, 115.7, 110.4, 45.9, 21.0, 18.2.IR (ATR) ν = 3324, 3016, 2910, 2857, 1597, 1573, 1520, 1410, 1385, 1319, 1300, 1237, 1201, 1162, 1105, 982, 925, 872, 823, 795, 738, 699 cm-1.ESI-MS: 355.2 (M+H)+
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71651 (14) 0.61537 (10) 0.20685 (11) 0.0467 (4)
C2 0.77995 (15) 0.65594 (11) 0.12222 (12) 0.0519 (4)
H2 0.7410 0.7089 0.0880 0.062*
C3 0.89744 (16) 0.62050 (12) 0.08793 (13) 0.0561 (4)
H3 0.9384 0.6496 0.0309 0.067*
C4 0.95605 (15) 0.54320 (12) 0.13561 (13) 0.0570 (4)
H4 1.0372 0.5190 0.1122 0.068*
C5 0.89426 (14) 0.50159 (11) 0.21827 (13) 0.0520 (4)
H5 0.9344 0.4485 0.2513 0.062*
C6 0.77536 (14) 0.53505 (10) 0.25443 (11) 0.0461 (4)
N7 0.60350 (13) 0.65335 (9) 0.24471 (10) 0.0533 (4)
H7 0.5685 0.6237 0.3051 0.064*
C8 0.53902 (15) 0.73596 (11) 0.20054 (12) 0.0533 (4)
H8A 0.6068 0.7844 0.1866 0.064*
H8B 0.4795 0.7627 0.2524 0.064*
C9 0.46014 (14) 0.71777 (10) 0.10157 (12) 0.0507 (4)
C10 0.46398 (16) 0.78089 (11) 0.01988 (13) 0.0572 (4)
H10 0.5201 0.8346 0.0249 0.069*
C11 0.38731 (18) 0.76708 (12) −0.06926 (14) 0.0637 (5)
H11 0.3914 0.8110 −0.1247 0.076*
C12 0.30522 (17) 0.68959 (13) −0.07725 (15) 0.0640 (5)
H12 0.2516 0.6805 −0.1377 0.077*
C13 0.30119 (17) 0.62530 (13) 0.00294 (16) 0.0660 (5)
H13 0.2456 0.5713 −0.0028 0.079*
C14 0.37786 (16) 0.63914 (12) 0.09166 (14) 0.0608 (4)
H14 0.3744 0.5945 0.1465 0.073*
C15 0.71631 (14) 0.48715 (10) 0.34537 (12) 0.0474 (4)
C15A 0.59375 (14) 0.43752 (10) 0.33858 (12) 0.0491 (4)
C16 0.51672 (14) 0.43056 (10) 0.24628 (13) 0.0520 (4)
H16 0.5461 0.4613 0.1858 0.062*
C17 0.40017 (15) 0.38053 (11) 0.24148 (15) 0.0596 (4)
C18 0.35773 (17) 0.33600 (13) 0.33235 (18) 0.0695 (5)
H18 0.2770 0.3020 0.3302 0.083*
C19 0.42868 (17) 0.34010 (12) 0.42324 (17) 0.0670 (5)
H19 0.3978 0.3092 0.4832 0.080*
C19A 0.54775 (15) 0.39039 (11) 0.42727 (13) 0.0549 (4)
N20 0.62225 (14) 0.39157 (10) 0.51958 (11) 0.0584 (4)
C21 0.73692 (17) 0.43875 (11) 0.52665 (13) 0.0567 (4)
C22 0.78247 (16) 0.48609 (11) 0.43914 (12) 0.0529 (4)
H22 0.8636 0.5192 0.4452 0.063*
C23 0.31976 (18) 0.37395 (14) 0.14289 (18) 0.0732 (5)
H23A 0.2438 0.4165 0.1465 0.110*
H23B 0.2890 0.3087 0.1330 0.110*
H23C 0.3739 0.3924 0.0846 0.110*
O24 0.57999 (13) 0.34483 (10) 0.59927 (10) 0.0755 (4)
C25 0.8079 (2) 0.43775 (15) 0.62843 (14) 0.0725 (5)
H25A 0.8872 0.4770 0.6248 0.109*
H25B 0.8328 0.3726 0.6462 0.109*
H25C 0.7505 0.4631 0.6815 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0483 (8) 0.0467 (8) 0.0453 (8) −0.0049 (6) 0.0027 (6) −0.0022 (6)
C2 0.0552 (8) 0.0504 (8) 0.0504 (9) −0.0038 (6) 0.0054 (6) 0.0039 (6)
C3 0.0553 (9) 0.0606 (9) 0.0529 (9) −0.0096 (7) 0.0093 (7) 0.0038 (7)
C4 0.0469 (8) 0.0643 (10) 0.0603 (10) −0.0025 (7) 0.0106 (7) 0.0007 (7)
C5 0.0482 (8) 0.0514 (8) 0.0565 (9) −0.0014 (6) 0.0029 (7) 0.0016 (6)
C6 0.0469 (7) 0.0450 (7) 0.0464 (8) −0.0060 (6) 0.0025 (6) −0.0020 (6)
N7 0.0584 (8) 0.0509 (7) 0.0513 (8) 0.0061 (5) 0.0123 (6) 0.0076 (5)
C8 0.0588 (9) 0.0458 (8) 0.0557 (9) 0.0033 (6) 0.0101 (7) 0.0010 (6)
C9 0.0492 (8) 0.0465 (8) 0.0569 (9) 0.0076 (6) 0.0108 (6) 0.0007 (6)
C10 0.0603 (9) 0.0472 (8) 0.0641 (10) 0.0020 (7) 0.0032 (7) 0.0051 (7)
C11 0.0701 (10) 0.0568 (9) 0.0638 (11) 0.0095 (8) −0.0024 (8) 0.0065 (8)
C12 0.0578 (9) 0.0650 (10) 0.0688 (11) 0.0128 (8) −0.0036 (8) −0.0081 (8)
C13 0.0590 (10) 0.0599 (10) 0.0792 (12) −0.0035 (7) 0.0018 (8) −0.0045 (8)
C14 0.0603 (9) 0.0541 (9) 0.0683 (11) −0.0014 (7) 0.0103 (8) 0.0060 (8)
C15 0.0491 (8) 0.0420 (7) 0.0513 (9) 0.0026 (6) 0.0068 (6) 0.0002 (6)
C15A 0.0494 (8) 0.0400 (7) 0.0584 (9) 0.0041 (6) 0.0122 (6) 0.0014 (6)
C16 0.0507 (8) 0.0435 (8) 0.0621 (10) 0.0006 (6) 0.0084 (7) −0.0015 (6)
C17 0.0486 (8) 0.0467 (8) 0.0838 (12) 0.0007 (6) 0.0078 (8) −0.0028 (7)
C18 0.0492 (9) 0.0546 (9) 0.1052 (16) −0.0036 (7) 0.0162 (9) 0.0077 (9)
C19 0.0559 (9) 0.0568 (10) 0.0895 (13) 0.0044 (7) 0.0254 (9) 0.0170 (8)
C19A 0.0535 (8) 0.0469 (8) 0.0651 (11) 0.0093 (6) 0.0174 (7) 0.0074 (7)
N20 0.0649 (8) 0.0536 (8) 0.0578 (9) 0.0140 (6) 0.0227 (6) 0.0111 (6)
C21 0.0651 (9) 0.0525 (8) 0.0530 (10) 0.0118 (7) 0.0120 (7) 0.0027 (7)
C22 0.0574 (8) 0.0491 (8) 0.0523 (9) 0.0026 (6) 0.0052 (7) 0.0007 (6)
C23 0.0560 (10) 0.0622 (10) 0.1011 (15) −0.0063 (8) −0.0062 (9) −0.0083 (9)
O24 0.0814 (8) 0.0774 (9) 0.0694 (9) 0.0177 (6) 0.0337 (7) 0.0280 (6)
C25 0.0907 (13) 0.0757 (12) 0.0512 (10) 0.0172 (10) 0.0075 (9) 0.0057 (8)

Geometric parameters (Å, º)

C1—N7 1.370 (2) C13—H13 0.9500
C1—C2 1.407 (2) C14—H14 0.9500
C1—C6 1.415 (2) C15—C22 1.371 (2)
C2—C3 1.379 (2) C15—C15A 1.430 (2)
C2—H2 0.9500 C15A—C16 1.414 (2)
C3—C4 1.381 (2) C15A—C19A 1.417 (2)
C3—H3 0.9500 C16—C17 1.379 (2)
C4—C5 1.385 (2) C16—H16 0.9500
C4—H4 0.9500 C17—C18 1.411 (3)
C5—C6 1.390 (2) C17—C23 1.499 (3)
C5—H5 0.9500 C18—C19 1.364 (3)
C6—C15 1.497 (2) C18—H18 0.9500
N7—C8 1.448 (2) C19—C19A 1.403 (2)
N7—H7 0.9629 C19—H19 0.9500
C8—C9 1.514 (2) C19A—N20 1.397 (2)
C8—H8A 0.9900 N20—O24 1.3064 (17)
C8—H8B 0.9900 N20—C21 1.343 (2)
C9—C10 1.384 (2) C21—C22 1.404 (2)
C9—C14 1.393 (2) C21—C25 1.484 (3)
C10—C11 1.388 (2) C22—H22 0.9500
C10—H10 0.9500 C23—H23A 0.9800
C11—C12 1.378 (3) C23—H23B 0.9800
C11—H11 0.9500 C23—H23C 0.9800
C12—C13 1.380 (3) C25—H25A 0.9800
C12—H12 0.9500 C25—H25B 0.9800
C13—C14 1.384 (3) C25—H25C 0.9800
N7—C1—C2 121.68 (14) C9—C14—H14 119.6
N7—C1—C6 120.44 (13) C22—C15—C15A 117.05 (14)
C2—C1—C6 117.85 (13) C22—C15—C6 120.19 (13)
C3—C2—C1 121.45 (15) C15A—C15—C6 122.70 (14)
C3—C2—H2 119.3 C16—C15A—C19A 117.66 (14)
C1—C2—H2 119.3 C16—C15A—C15 123.22 (14)
C2—C3—C4 120.66 (15) C19A—C15A—C15 119.10 (15)
C2—C3—H3 119.7 C17—C16—C15A 121.95 (15)
C4—C3—H3 119.7 C17—C16—H16 119.0
C3—C4—C5 118.73 (15) C15A—C16—H16 119.0
C3—C4—H4 120.6 C16—C17—C18 118.18 (17)
C5—C4—H4 120.6 C16—C17—C23 121.20 (16)
C4—C5—C6 122.15 (15) C18—C17—C23 120.62 (15)
C4—C5—H5 118.9 C19—C18—C17 122.21 (16)
C6—C5—H5 118.9 C19—C18—H18 118.9
C5—C6—C1 119.14 (13) C17—C18—H18 118.9
C5—C6—C15 118.80 (13) C18—C19—C19A 119.28 (17)
C1—C6—C15 122.01 (13) C18—C19—H19 120.4
C1—N7—C8 123.31 (13) C19A—C19—H19 120.4
C1—N7—H7 116.8 N20—C19A—C19 119.02 (15)
C8—N7—H7 119.8 N20—C19A—C15A 120.24 (14)
N7—C8—C9 114.90 (13) C19—C19A—C15A 120.72 (17)
N7—C8—H8A 108.5 O24—N20—C21 119.97 (15)
C9—C8—H8A 108.5 O24—N20—C19A 119.11 (14)
N7—C8—H8B 108.5 C21—N20—C19A 120.91 (13)
C9—C8—H8B 108.5 N20—C21—C22 119.03 (15)
H8A—C8—H8B 107.5 N20—C21—C25 117.11 (15)
C10—C9—C14 118.15 (15) C22—C21—C25 123.85 (16)
C10—C9—C8 120.76 (14) C15—C22—C21 123.65 (15)
C14—C9—C8 121.04 (14) C15—C22—H22 118.2
C9—C10—C11 121.16 (16) C21—C22—H22 118.2
C9—C10—H10 119.4 C17—C23—H23A 109.5
C11—C10—H10 119.4 C17—C23—H23B 109.5
C12—C11—C10 119.94 (16) H23A—C23—H23B 109.5
C12—C11—H11 120.0 C17—C23—H23C 109.5
C10—C11—H11 120.0 H23A—C23—H23C 109.5
C11—C12—C13 119.73 (16) H23B—C23—H23C 109.5
C11—C12—H12 120.1 C21—C25—H25A 109.5
C13—C12—H12 120.1 C21—C25—H25B 109.5
C12—C13—C14 120.23 (16) H25A—C25—H25B 109.5
C12—C13—H13 119.9 C21—C25—H25C 109.5
C14—C13—H13 119.9 H25A—C25—H25C 109.5
C13—C14—C9 120.79 (16) H25B—C25—H25C 109.5
C13—C14—H14 119.6
N7—C1—C2—C3 176.45 (14) C6—C15—C15A—C16 −1.0 (2)
C6—C1—C2—C3 −1.6 (2) C22—C15—C15A—C19A −0.2 (2)
C1—C2—C3—C4 0.5 (2) C6—C15—C15A—C19A 177.09 (13)
C2—C3—C4—C5 0.3 (2) C19A—C15A—C16—C17 0.5 (2)
C3—C4—C5—C6 0.1 (2) C15—C15A—C16—C17 178.62 (14)
C4—C5—C6—C1 −1.3 (2) C15A—C16—C17—C18 0.4 (2)
C4—C5—C6—C15 −178.91 (14) C15A—C16—C17—C23 179.98 (14)
N7—C1—C6—C5 −176.09 (14) C16—C17—C18—C19 −0.8 (3)
C2—C1—C6—C5 2.0 (2) C23—C17—C18—C19 179.66 (16)
N7—C1—C6—C15 1.4 (2) C17—C18—C19—C19A 0.2 (3)
C2—C1—C6—C15 179.53 (13) C18—C19—C19A—N20 −177.79 (14)
C2—C1—N7—C8 1.3 (2) C18—C19—C19A—C15A 0.7 (2)
C6—C1—N7—C8 179.29 (13) C16—C15A—C19A—N20 177.44 (12)
C1—N7—C8—C9 77.05 (18) C15—C15A—C19A—N20 −0.8 (2)
N7—C8—C9—C10 −138.41 (15) C16—C15A—C19A—C19 −1.1 (2)
N7—C8—C9—C14 44.11 (19) C15—C15A—C19A—C19 −179.29 (14)
C14—C9—C10—C11 0.6 (2) C19—C19A—N20—O24 0.9 (2)
C8—C9—C10—C11 −176.96 (14) C15A—C19A—N20—O24 −177.63 (13)
C9—C10—C11—C12 0.2 (2) C19—C19A—N20—C21 179.90 (15)
C10—C11—C12—C13 −1.0 (3) C15A—C19A—N20—C21 1.4 (2)
C11—C12—C13—C14 0.9 (3) O24—N20—C21—C22 178.06 (13)
C12—C13—C14—C9 −0.0 (3) C19A—N20—C21—C22 −0.9 (2)
C10—C9—C14—C13 −0.7 (2) O24—N20—C21—C25 −2.3 (2)
C8—C9—C14—C13 176.86 (15) C19A—N20—C21—C25 178.73 (13)
C5—C6—C15—C22 61.76 (19) C15A—C15—C22—C21 0.6 (2)
C1—C6—C15—C22 −115.76 (16) C6—C15—C22—C21 −176.72 (14)
C5—C6—C15—C15A −115.43 (16) N20—C21—C22—C15 −0.1 (2)
C1—C6—C15—C15A 67.05 (19) C25—C21—C22—C15 −179.72 (15)
C22—C15—C15A—C16 −178.31 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N7—H7···O24i 0.96 2.03 2.7852 (17) 134

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5844).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665. [DOI] [PMC free article] [PubMed]
  3. Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.
  4. Fahlquist, H., Healy, P. C., Young, D. J. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o3805–o3807.
  5. Hartwig, J. F. (1999). Pure Appl. Chem. 71, 1416–1423.
  6. Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P. & Chernyshev, V. V. (2002). Acta Cryst. E58, o920–o922. [DOI] [PubMed]
  7. Letessier, J. & Detert, H. (2012). Synthesis, 44, 290–296.
  8. Letessier, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o2494. [DOI] [PMC free article] [PubMed]
  9. Letessier, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2341. [DOI] [PMC free article] [PubMed]
  10. Miao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314. [DOI] [PMC free article] [PubMed]
  11. Moreno-Fuquen, R., Shankland, K. & Fabbiani, F. P. A. (2007). Acta Cryst. E63, o2891. [DOI] [PMC free article] [PubMed]
  12. Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425. [DOI] [PMC free article] [PubMed]
  13. Muci, A. R. & Buchwald, S. L. (2002). Top. Curr. Chem. 219, 131–209.
  14. Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Stoe & Cie (2011). X-RED and X-AREA Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011002/bt5844sup1.cif

e-68-o1106-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011002/bt5844Isup2.hkl

e-68-o1106-Isup2.hkl (153.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011002/bt5844Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES