Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1109–o1110. doi: 10.1107/S1600536812010884

3-De­oxy-1,2-di-O-isopropyl­idene-5-O-tosyl-d-threo-pentofuran­ose

Bogdan Doboszewski a, Maria J e Silva b, Alexander Y Nazarenko c,*, Victor N Nemykin d
PMCID: PMC3344058  PMID: 22589967

Abstract

In the crystal structure of the title compound, C15H20O6S, the two independent mol­ecules crystalllize in a chiral setting with two different conformations, twisted 4 T 3 and envelope 4 E, for the furan­ose rings. Weak C—H⋯O contacts strengthen the crystal structure.

Related literature  

For the syntheses of this and similar compounds, see: Cox et al. (1997); Dahlman et al. (1986); Doboszewski & Herdewijn (1996, 2008). For conformations of five-membered rings, see: Cremer & Pople (1975); Boeyens & Dobson (1987). For weak C—H⋯O contacts, see: Desiraju & Steiner (1999). For analysis of absolute structure, see: Flack (1983); Hooft et al. (2008); Tipson (1944); Fieser & Fieser (1967) describe tosyl­ation reactions. For standard bond length data, see: Allen (2002).graphic file with name e-68-o1109-scheme1.jpg

Experimental  

Crystal data  

  • C15H20O6S

  • M r = 328.37

  • Monoclinic, Inline graphic

  • a = 10.9397 (1) Å

  • b = 9.4251 (1) Å

  • c = 15.4833 (10) Å

  • β = 96.414 (7)°

  • V = 1586.46 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 123 K

  • 0.2 × 0.2 × 0.18 mm

Data collection  

  • Rigaku R-AXIS RAPID II imaging plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.55, T max = 0.65

  • 14179 measured reflections

  • 4917 independent reflections

  • 4440 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.087

  • S = 1.04

  • 4917 reflections

  • 404 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 2059 Friedel pairs

  • Flack parameter: 0.005 (12)

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010884/zl2463sup1.cif

e-68-o1109-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010884/zl2463Isup2.hkl

e-68-o1109-Isup2.hkl (240.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010884/zl2463Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 1.00 2.48 3.390 (3) 152
C5—H5B⋯O3 0.99 2.56 3.196 (3) 122
C11—H11⋯O12ii 0.95 2.44 3.163 (3) 133
C24—H24⋯O15iii 1.00 2.42 3.315 (3) 148
C28—H28C⋯O6iv 0.98 2.54 3.471 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This study was supported by the NSF (grant CHE-0922366 for X-ray diffractometer) and by SUNY (grant No 1073053).

supplementary crystallographic information

Comment

D- and L-arabinose are very convenient chiral-pool substrates for stereoselective synthesis since both of them are commercially available, reasonably priced, and easy to functionalize in two steps to form 5-O-t-butyldiphenylsilyl-1,2-O-isopropylidene furanose or its L-enantiomer (Dahlman et al., 1986; Doboszewski & Herdewijn, 2008). Both enantiomers have been previously used in the synthesis of degradation products of the antibiotic Batumin/Kalimantacin A (Doboszewski & Herdewijn, 2008), to obtain branched-chain pyranosyl nucleosides (Doboszewski & Herdewijn, 1996) and C-hydroxymethylpentose present in lipopolysaccharides of Coxiella brunetii (Dahlman et al., 1986), among others. Our current interest in arabinose stems from a possibility to convert it into the general substrates 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose and 3-deoxy-1,2-di-O-isopropylidene-5-O-butyldiphenylsilyl-D-threo-pentofuranose to be used in further transformations. A synthesis scheme for both these compounds is shown in Figure 1. We wanted to firmly establish their structures, due to a possibility of enolization of the ulose and concomitant inversion of configuration at the C4 position during formation of the tosylhydrazone.

A correct absolute structure of the title compound was important for the further synthetic work. Because of that, we have selected Cu Kα radiation to ensure unambigous determination of the absolute structure.

In the crystal structure of the title compound (Fig.2), there are two crystallographically independent molecules, A (C1–C15, O1–O6, S1) and B (C21–C35, O11–O16, S2), in which all bond lengths and bond angles have standard dimensions. The six-membered phenyl rings in both molecules are flat within 0.01 Å.

It is visually obvious (Fig. 3 and Fig. 4) that the conformations of the five-membered rings differs in the two independent molecules A and B. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. In molecule A, the polar parameters for the furanose ring and adjacent five membered ring are Q = 0.289 (3) and 0.312 (2) Å, Φ = 122.9 (5)° and 119.7 (5)°, respectively. These suggest a twisted 4T3 conformation for the furanose ring (ideal Φ = 126°), slightly distorted towards envelope (Φ = 108°). The substituent ring also has a twisted conformation (Fig. 3).

In molecule B (Fig. 4), the polar parameters for the furanose ring and the corresponding five membered ring are Q = 0.292 (3) and 0.361 (2) Å, Φ = 142.1 (5)° and 143.9 (4)°. These suggest an envelope conformation (ideal Φ = 144°) for both rings, with atoms C(24) and C(26) in the corners of the respective envelopes (4E for the furanose ring).

In the structure of 1,2-di-O-isopropylidene-5-O-tosyl-D-xylofuranose which differs from the title compound in one hydroxy group, the polar parameters are Q = 0.352 (3) Å, Φ = 288.8 (5)°; see refcodes RUWDES and RUWDES01 (Cox et al., 1997). This makes the conformation an almost exact 3E envelope, but with a different carbon atom in the corner than in the case described here. Obviously, the furanose ring conformation is highly flexible and is easily influenced even by weak intermolecular interactions.

A short intramolecular contact is present between sulfonyl O atoms O5 and O15 and neighboring hydrogen atoms of the adjacent respective phenyl rings (see Table 1). This is quite common for aryl sulfonyls and the majority of these compounds exhibit these intramolecular interactions (mean H···O distance is 2.533 Å for more than 2500 analogous structures listed in the Cambridge Structural Database (Allen, 2002)). It may additionaly stabilize the conformation of the molecule. Only weak intermolecular C—H···O contacts (Table 1) exist between neighboring molecules.

Experimental

Title compound was obtained as a product of a multi-step synthetic procedure (Doboszewski & Herdewijn, 2008; see Fig. 1). The tosylation of the previously synthesized 3-deoxy-1,2-di-O-isopropylidene-5-O-t-butyldiphenylsilyl-D-threo-pentofuranose by tosyl chloride in dry pyridine following standard reaction conditions (Tipson, 1944; Fieser & Fieser, 1967) produced the title compound in quantitative (near 100%) yield. Crystals suitable for X-ray diffraction experiment were crystallized from a hexane - diethyl ether mixture.

Rf 0.36 in hexane- EtOAc 2:1; mp. 346–348 K (from Et2O-hexane); αD +42.8° (c 1.6 g/100mL, CHCl3); exact mass (electrospray): calc. for C15H20O6S + Na+= 351.0873, found 351.0872; 1H NMR (300 MHz, CDCl3): 7.80(d, J=8.3 Hz,2H), 7.34(d, J=8.3 Hz, 2H), 5.76(d, J=3.7 Hz, 1H), 4.69(t, J=4.6 Hz, 1H), 4.36(dddd, J=2.0 Hz, 6.5 Hz, 6.5 Hz, 8.4 Hz, 1H), 4.19(dd, J= 6.9 Hz, 9.7 Hz, 1H), 4.11(dd,J=6.6 Hz, 9.7 Hz, 1H), 2,44(s, 3H), 2.17(ddd, J=5.7 Hz, 8.5 Hz, 14.4 Hz, 1H), 2.04(dd, J=1.6 Hz, 14.5 Hz, 1H), 1.33 and 1.25(two s, 3H each); 13C NMR (75 MHz, CDCl3): 145.01, 132.96, 129.99, 128.16, 112.32, 106.94, 80.33, 77.91, 71.34, 33.68, 26.74, 25.70, 21.73. FTIR (diamond ATR): 2985, 2944, 1598, 1381, 1188, 991, 953, 705, 574 cm-1.

Refinement

Final refinement was performed using TWIN/BASF type resulting in BASF = 0.00458. Analysis of the absolute structure using likelihood methods (Hooft et al., 2008) was performed using PLATON (Spek, 2009); 2059 Bijvoet pairs were employed. The results confirmed that the absolute structure had been correctly assigned: the probability that the structure is inverted and probability of racemic twinning being statistically zero. All H atoms were positioned geometrically with C—H =0.95–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group refinement (AFIX 137) was employed for all methyl groups.

At data processing, a number of unobserved high angle reflections (with k from 8 to 11) of statistically zero intensity were excluded: 1 8 3, 2 8 3, 2 9 1, 3 9 0, 3 9 1, 3 9 2, 0 10 0, 0 10 1, 0 10 2, -5 10 2, -4 10 1, -4 10 2, -3 10 1, -2 10 1, -1 10 2, 1 10 0, 1 10 1, 1 10 2, 2 10 0, 3 10 0, 3 10 3, 4 10 0, 4 10 1, 4 10 2, 4 10 3, 5 10 2, -2 11 1, -3 11 1, 0 11 3.

Figures

Fig. 1.

Fig. 1.

Scheme of the synthetic route leading to title compound.

Fig. 2.

Fig. 2.

ORTEP view of two independent 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose molecules (A and B) with displacement ellipsoids drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Twisted conformations of the five-membered rings in molecule A. Planes are drawn through atoms O1, C1, and C2 (yellow) and O2, C1, and C2 (green).

Fig. 4.

Fig. 4.

Envelope conformations of the five-membered rings in molecule B. Mean planes through atoms O11, C1, C2, C4 (yellow) and C1, C2, O2, and O3 (green).

Fig. 5.

Fig. 5.

View of the title compound showing displacement ellipsoids at the 50% probability level.

Crystal data

C15H20O6S F(000) = 696
Mr = 328.37 Dx = 1.375 Mg m3
Monoclinic, P21 Melting point: 347(1) K
Hall symbol: P 2yb Cu Kα radiation, λ = 1.54187 Å
a = 10.9397 (1) Å Cell parameters from 14102 reflections
b = 9.4251 (1) Å θ = 2.9–68.3°
c = 15.4833 (10) Å µ = 2.06 mm1
β = 96.414 (7)° T = 123 K
V = 1586.46 (10) Å3 Block, colourless
Z = 4 0.2 × 0.2 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID II imaging plate diffractometer 4917 independent reflections
Radiation source: fine-focus sealed tube 4440 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 10.0 pixels mm-1 θmax = 65.5°, θmin = 2.9°
ω scans h = −12→12
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −8→11
Tmin = 0.55, Tmax = 0.65 l = −18→18
14179 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0495P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4917 reflections Δρmax = 0.30 e Å3
404 parameters Δρmin = −0.26 e Å3
1 restraint Absolute structure: Flack (1983), 2059 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.005 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.32715 (6) 0.65201 (7) 0.88376 (4) 0.03365 (17)
O1 0.25715 (16) 0.2054 (2) 0.92121 (10) 0.0390 (5)
O2 0.16307 (15) 0.1633 (3) 0.78122 (10) 0.0473 (6)
O3 0.35387 (15) 0.1347 (2) 0.74148 (10) 0.0349 (4)
O4 0.32552 (16) 0.49623 (19) 0.92025 (10) 0.0328 (4)
O5 0.45192 (17) 0.6937 (2) 0.87784 (11) 0.0427 (5)
O6 0.25396 (18) 0.7302 (2) 0.93686 (11) 0.0473 (5)
C1 0.2332 (2) 0.1040 (3) 0.85455 (16) 0.0366 (7)
H1 0.1914 0.0186 0.8760 0.044*
C2 0.3566 (2) 0.0634 (3) 0.82292 (16) 0.0367 (7)
H2 0.3673 −0.0415 0.8178 0.044*
C3 0.4515 (2) 0.1298 (3) 0.88914 (16) 0.0396 (7)
H3A 0.5227 0.1651 0.8612 0.048*
H3B 0.4809 0.0607 0.9350 0.048*
C4 0.3831 (2) 0.2518 (3) 0.92672 (15) 0.0349 (7)
H4 0.4155 0.2653 0.9892 0.042*
C5 0.3957 (2) 0.3885 (3) 0.87844 (16) 0.0344 (6)
H5A 0.4833 0.4164 0.8814 0.041*
H5B 0.3628 0.3775 0.8166 0.041*
C6 0.2273 (2) 0.1439 (3) 0.70647 (15) 0.0316 (6)
C7 0.2104 (3) 0.2734 (3) 0.64975 (17) 0.0452 (7)
H7A 0.2584 0.2630 0.6004 0.068*
H7B 0.2385 0.3574 0.6835 0.068*
H7C 0.1231 0.2841 0.6283 0.068*
C8 0.1844 (3) 0.0099 (3) 0.65937 (18) 0.0473 (8)
H8A 0.0972 0.0190 0.6373 0.071*
H8B 0.1952 −0.0707 0.6995 0.071*
H8C 0.2327 −0.0059 0.6106 0.071*
C9 0.2509 (2) 0.6412 (3) 0.77785 (14) 0.0286 (6)
C10 0.1249 (2) 0.6169 (3) 0.76511 (16) 0.0339 (7)
H10 0.0797 0.6031 0.8133 0.041*
C11 0.0667 (2) 0.6132 (3) 0.68185 (16) 0.0346 (7)
H11 −0.0194 0.5968 0.6731 0.042*
C12 0.1305 (2) 0.6327 (3) 0.61033 (15) 0.0314 (6)
C13 0.2563 (2) 0.6543 (3) 0.62421 (14) 0.0304 (6)
H13 0.3016 0.6666 0.5759 0.037*
C14 0.3168 (2) 0.6582 (3) 0.70733 (14) 0.0293 (6)
H14 0.4033 0.6725 0.7161 0.035*
C15 0.0639 (3) 0.6296 (4) 0.51920 (16) 0.0457 (8)
H15A 0.1056 0.5634 0.4834 0.069*
H15B 0.0643 0.7248 0.4938 0.069*
H15C −0.0212 0.5985 0.5214 0.069*
S2 0.37237 (6) 0.33823 (7) 0.40722 (4) 0.03353 (17)
O11 0.20451 (16) −0.0793 (2) 0.39873 (10) 0.0370 (5)
O12 0.15723 (16) −0.0483 (2) 0.25011 (10) 0.0363 (5)
O13 0.32440 (15) −0.1684 (2) 0.22108 (10) 0.0369 (5)
O14 0.33657 (14) 0.1829 (2) 0.43291 (10) 0.0350 (4)
O15 0.50001 (15) 0.3417 (2) 0.39625 (11) 0.0383 (5)
O16 0.32592 (17) 0.4259 (2) 0.47060 (11) 0.0433 (5)
C21 0.1763 (2) −0.1485 (3) 0.31885 (15) 0.0373 (7)
H21 0.1038 −0.2127 0.3199 0.045*
C22 0.2916 (2) −0.2316 (3) 0.29894 (15) 0.0356 (7)
H22 0.2747 −0.3354 0.2916 0.043*
C23 0.3858 (2) −0.2014 (3) 0.37619 (16) 0.0397 (7)
H23A 0.4677 −0.1826 0.3571 0.048*
H23B 0.3925 −0.2824 0.4172 0.048*
C24 0.3365 (2) −0.0699 (3) 0.41833 (16) 0.0328 (6)
H24 0.3581 −0.0759 0.4827 0.039*
C25 0.3872 (2) 0.0657 (3) 0.38602 (15) 0.0333 (6)
H25A 0.4782 0.0657 0.3968 0.040*
H25B 0.3633 0.0759 0.3228 0.040*
C26 0.2142 (2) −0.1047 (3) 0.17900 (15) 0.0352 (7)
C27 0.2475 (3) 0.0131 (4) 0.12171 (16) 0.0458 (8)
H27A 0.2835 −0.0264 0.0717 0.069*
H27B 0.3075 0.0756 0.1545 0.069*
H27C 0.1736 0.0675 0.1013 0.069*
C28 0.1314 (3) −0.2140 (4) 0.13137 (17) 0.0484 (8)
H28A 0.0541 −0.1691 0.1076 0.073*
H28B 0.1141 −0.2897 0.1717 0.073*
H28C 0.1723 −0.2544 0.0838 0.073*
C29 0.2868 (2) 0.3655 (3) 0.30546 (15) 0.0299 (6)
C30 0.1609 (2) 0.3732 (3) 0.30083 (16) 0.0380 (7)
H30 0.1208 0.3655 0.3520 0.046*
C31 0.0930 (3) 0.3923 (3) 0.22034 (17) 0.0423 (8)
H31 0.0058 0.3980 0.2168 0.051*
C32 0.1503 (3) 0.4034 (3) 0.14480 (17) 0.0363 (7)
C33 0.2781 (3) 0.3983 (3) 0.15257 (17) 0.0397 (7)
H33 0.3190 0.4075 0.1019 0.048*
C34 0.3470 (2) 0.3801 (3) 0.23193 (16) 0.0351 (7)
H34 0.4343 0.3776 0.2361 0.042*
C35 0.0762 (3) 0.4189 (4) 0.05773 (18) 0.0514 (8)
H35A 0.1229 0.3808 0.0125 0.077*
H35B 0.0584 0.5195 0.0462 0.077*
H35C −0.0012 0.3665 0.0576 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0464 (4) 0.0303 (4) 0.0239 (3) −0.0009 (3) 0.0023 (3) −0.0021 (3)
O1 0.0468 (11) 0.0378 (13) 0.0338 (9) −0.0049 (9) 0.0105 (8) −0.0022 (8)
O2 0.0328 (10) 0.0770 (17) 0.0323 (9) 0.0110 (11) 0.0043 (8) −0.0023 (10)
O3 0.0337 (10) 0.0388 (13) 0.0325 (8) 0.0022 (9) 0.0055 (7) 0.0022 (9)
O4 0.0467 (11) 0.0256 (11) 0.0260 (8) 0.0015 (9) 0.0046 (7) −0.0009 (8)
O5 0.0482 (11) 0.0449 (14) 0.0326 (9) −0.0158 (10) −0.0064 (8) 0.0009 (9)
O6 0.0734 (14) 0.0392 (14) 0.0306 (9) 0.0083 (11) 0.0120 (9) −0.0024 (9)
C1 0.0457 (16) 0.0346 (19) 0.0308 (13) −0.0058 (13) 0.0107 (11) 0.0011 (12)
C2 0.0454 (16) 0.0284 (17) 0.0363 (14) 0.0088 (14) 0.0040 (12) 0.0046 (12)
C3 0.0431 (16) 0.035 (2) 0.0391 (14) 0.0106 (13) −0.0041 (12) 0.0048 (14)
C4 0.0370 (16) 0.0387 (19) 0.0274 (12) 0.0031 (13) −0.0039 (10) 0.0014 (12)
C5 0.0353 (15) 0.0362 (19) 0.0323 (13) 0.0046 (12) 0.0059 (11) −0.0011 (12)
C6 0.0322 (14) 0.0336 (18) 0.0289 (12) −0.0010 (13) 0.0024 (10) −0.0034 (12)
C7 0.0558 (19) 0.0331 (18) 0.0430 (15) −0.0011 (15) −0.0107 (13) −0.0017 (14)
C8 0.058 (2) 0.038 (2) 0.0438 (15) −0.0073 (15) −0.0057 (14) −0.0009 (14)
C9 0.0312 (13) 0.0279 (16) 0.0266 (11) 0.0024 (12) 0.0031 (10) 0.0003 (12)
C10 0.0319 (14) 0.038 (2) 0.0336 (13) −0.0029 (12) 0.0112 (11) 0.0061 (12)
C11 0.0233 (13) 0.0341 (19) 0.0465 (15) −0.0006 (12) 0.0040 (11) 0.0063 (13)
C12 0.0344 (14) 0.0265 (17) 0.0319 (12) −0.0018 (12) −0.0028 (11) −0.0013 (12)
C13 0.0310 (13) 0.0318 (17) 0.0291 (12) −0.0029 (12) 0.0061 (10) −0.0002 (12)
C14 0.0250 (13) 0.0357 (17) 0.0273 (11) −0.0042 (12) 0.0035 (10) −0.0028 (12)
C15 0.0442 (17) 0.053 (2) 0.0378 (14) 0.0004 (15) −0.0052 (12) 0.0010 (15)
S2 0.0354 (4) 0.0359 (4) 0.0286 (3) 0.0021 (3) 0.0008 (3) −0.0048 (3)
O11 0.0358 (10) 0.0478 (14) 0.0283 (9) 0.0019 (9) 0.0081 (7) −0.0012 (9)
O12 0.0372 (10) 0.0429 (13) 0.0289 (9) 0.0126 (9) 0.0035 (7) −0.0006 (8)
O13 0.0364 (10) 0.0445 (13) 0.0307 (9) 0.0112 (9) 0.0084 (7) 0.0056 (9)
O14 0.0402 (10) 0.0365 (13) 0.0288 (9) 0.0065 (9) 0.0056 (7) −0.0015 (8)
O15 0.0312 (10) 0.0436 (13) 0.0390 (10) −0.0023 (9) −0.0008 (8) −0.0065 (9)
O16 0.0512 (12) 0.0435 (14) 0.0352 (10) 0.0072 (10) 0.0049 (8) −0.0097 (9)
C21 0.0406 (16) 0.0427 (19) 0.0290 (13) −0.0028 (14) 0.0051 (11) −0.0005 (13)
C22 0.0446 (17) 0.0300 (17) 0.0331 (13) 0.0048 (13) 0.0084 (11) 0.0057 (12)
C23 0.0458 (17) 0.037 (2) 0.0356 (14) 0.0102 (14) 0.0035 (12) 0.0081 (13)
C24 0.0302 (14) 0.0377 (19) 0.0297 (13) 0.0072 (12) −0.0002 (10) 0.0043 (12)
C25 0.0329 (14) 0.0381 (18) 0.0290 (13) 0.0079 (13) 0.0037 (10) −0.0046 (12)
C26 0.0366 (15) 0.0432 (19) 0.0261 (13) 0.0090 (13) 0.0047 (11) −0.0014 (12)
C27 0.0513 (18) 0.051 (2) 0.0343 (14) 0.0006 (15) 0.0020 (12) 0.0087 (14)
C28 0.0561 (19) 0.055 (2) 0.0329 (14) −0.0021 (16) 0.0018 (13) −0.0016 (15)
C29 0.0343 (14) 0.0232 (17) 0.0316 (12) 0.0012 (12) 0.0008 (11) −0.0029 (11)
C30 0.0312 (15) 0.048 (2) 0.0356 (14) −0.0004 (13) 0.0085 (11) 0.0047 (13)
C31 0.0286 (15) 0.054 (2) 0.0440 (16) 0.0002 (14) 0.0036 (12) 0.0079 (14)
C32 0.0405 (15) 0.0320 (18) 0.0355 (14) 0.0001 (13) 0.0002 (12) −0.0003 (12)
C33 0.0420 (17) 0.046 (2) 0.0324 (14) 0.0016 (14) 0.0098 (12) −0.0005 (13)
C34 0.0275 (14) 0.042 (2) 0.0368 (14) −0.0018 (12) 0.0059 (11) −0.0005 (12)
C35 0.055 (2) 0.055 (2) 0.0416 (16) −0.0039 (17) −0.0059 (13) −0.0018 (15)

Geometric parameters (Å, º)

S1—O6 1.4167 (18) S2—O16 1.4201 (18)
S1—O5 1.4332 (19) S2—O15 1.4257 (17)
S1—O4 1.5740 (19) S2—O14 1.578 (2)
S1—C9 1.758 (2) S2—C29 1.760 (2)
O1—C1 1.410 (3) O11—C21 1.402 (3)
O1—C4 1.439 (3) O11—C24 1.445 (3)
O2—C1 1.413 (3) O12—C21 1.421 (3)
O2—C6 1.431 (3) O12—C26 1.427 (3)
O3—C2 1.426 (3) O13—C22 1.426 (3)
O3—C6 1.432 (3) O13—C26 1.436 (3)
O4—C5 1.467 (3) O14—C25 1.464 (3)
C1—C2 1.535 (3) C21—C22 1.544 (4)
C1—H1 1.0000 C21—H21 1.0000
C2—C3 1.510 (4) C22—C23 1.516 (4)
C2—H2 1.0000 C22—H22 1.0000
C3—C4 1.522 (4) C23—C24 1.526 (4)
C3—H3A 0.9900 C23—H23A 0.9900
C3—H3B 0.9900 C23—H23B 0.9900
C4—C5 1.503 (4) C24—C25 1.501 (4)
C4—H4 1.0000 C24—H24 1.0000
C5—H5A 0.9900 C25—H25A 0.9900
C5—H5B 0.9900 C25—H25B 0.9900
C6—C7 1.502 (4) C26—C27 1.492 (4)
C6—C8 1.508 (4) C26—C28 1.509 (4)
C7—H7A 0.9800 C27—H27A 0.9800
C7—H7B 0.9800 C27—H27B 0.9800
C7—H7C 0.9800 C27—H27C 0.9800
C8—H8A 0.9800 C28—H28A 0.9800
C8—H8B 0.9800 C28—H28B 0.9800
C8—H8C 0.9800 C28—H28C 0.9800
C9—C14 1.383 (3) C29—C30 1.372 (3)
C9—C10 1.390 (3) C29—C34 1.385 (3)
C10—C11 1.373 (3) C30—C31 1.390 (4)
C10—H10 0.9500 C30—H30 0.9500
C11—C12 1.385 (3) C31—C32 1.392 (3)
C11—H11 0.9500 C31—H31 0.9500
C12—C13 1.384 (3) C32—C33 1.391 (4)
C12—C15 1.514 (3) C32—C35 1.501 (4)
C13—C14 1.380 (3) C33—C34 1.378 (4)
C13—H13 0.9500 C33—H33 0.9500
C14—H14 0.9500 C34—H34 0.9500
C15—H15A 0.9800 C35—H35A 0.9800
C15—H15B 0.9800 C35—H35B 0.9800
C15—H15C 0.9800 C35—H35C 0.9800
O6—S1—O5 119.90 (13) O16—S2—O15 119.98 (12)
O6—S1—O4 104.30 (11) O16—S2—O14 104.35 (11)
O5—S1—O4 109.14 (11) O15—S2—O14 108.99 (11)
O6—S1—C9 109.36 (12) O16—S2—C29 109.76 (12)
O5—S1—C9 108.18 (11) O15—S2—C29 108.69 (11)
O4—S1—C9 104.94 (11) O14—S2—C29 103.82 (11)
C1—O1—C4 110.36 (19) C21—O11—C24 109.26 (19)
C1—O2—C6 109.11 (18) C21—O12—C26 106.85 (19)
C2—O3—C6 106.69 (18) C22—O13—C26 106.29 (18)
C5—O4—S1 117.38 (15) C25—O14—S2 117.15 (15)
O1—C1—O2 111.1 (2) O11—C21—O12 110.5 (2)
O1—C1—C2 107.7 (2) O11—C21—C22 108.0 (2)
O2—C1—C2 105.09 (18) O12—C21—C22 104.04 (18)
O1—C1—H1 110.9 O11—C21—H21 111.3
O2—C1—H1 110.9 O12—C21—H21 111.3
C2—C1—H1 110.9 C22—C21—H21 111.3
O3—C2—C3 110.5 (2) O13—C22—C23 112.1 (2)
O3—C2—C1 103.4 (2) O13—C22—C21 104.2 (2)
C3—C2—C1 104.0 (2) C23—C22—C21 104.2 (2)
O3—C2—H2 112.7 O13—C22—H22 112.0
C3—C2—H2 112.7 C23—C22—H22 112.0
C1—C2—H2 112.7 C21—C22—H22 112.0
C2—C3—C4 104.0 (2) C22—C23—C24 104.4 (2)
C2—C3—H3A 110.9 C22—C23—H23A 110.9
C4—C3—H3A 110.9 C24—C23—H23A 110.9
C2—C3—H3B 110.9 C22—C23—H23B 110.9
C4—C3—H3B 110.9 C24—C23—H23B 110.9
H3A—C3—H3B 109.0 H23A—C23—H23B 108.9
O1—C4—C5 111.8 (2) O11—C24—C25 112.3 (2)
O1—C4—C3 104.8 (2) O11—C24—C23 104.6 (2)
C5—C4—C3 112.4 (2) C25—C24—C23 112.8 (2)
O1—C4—H4 109.2 O11—C24—H24 109.0
C5—C4—H4 109.2 C25—C24—H24 109.0
C3—C4—H4 109.2 C23—C24—H24 109.0
O4—C5—C4 106.98 (19) O14—C25—C24 107.61 (19)
O4—C5—H5A 110.3 O14—C25—H25A 110.2
C4—C5—H5A 110.3 C24—C25—H25A 110.2
O4—C5—H5B 110.3 O14—C25—H25B 110.2
C4—C5—H5B 110.3 C24—C25—H25B 110.2
H5A—C5—H5B 108.6 H25A—C25—H25B 108.5
O3—C6—O2 104.07 (17) O12—C26—O13 102.86 (18)
O3—C6—C7 108.8 (2) O12—C26—C27 109.8 (2)
O2—C6—C7 109.2 (2) O13—C26—C27 109.4 (2)
O3—C6—C8 111.6 (2) O12—C26—C28 110.0 (2)
O2—C6—C8 110.1 (2) O13—C26—C28 111.3 (3)
C7—C6—C8 112.7 (2) C27—C26—C28 113.0 (2)
C6—C7—H7A 109.5 C26—C27—H27A 109.5
C6—C7—H7B 109.5 C26—C27—H27B 109.5
H7A—C7—H7B 109.5 H27A—C27—H27B 109.5
C6—C7—H7C 109.5 C26—C27—H27C 109.5
H7A—C7—H7C 109.5 H27A—C27—H27C 109.5
H7B—C7—H7C 109.5 H27B—C27—H27C 109.5
C6—C8—H8A 109.5 C26—C28—H28A 109.5
C6—C8—H8B 109.5 C26—C28—H28B 109.5
H8A—C8—H8B 109.5 H28A—C28—H28B 109.5
C6—C8—H8C 109.5 C26—C28—H28C 109.5
H8A—C8—H8C 109.5 H28A—C28—H28C 109.5
H8B—C8—H8C 109.5 H28B—C28—H28C 109.5
C14—C9—C10 120.2 (2) C30—C29—C34 121.2 (2)
C14—C9—S1 119.69 (18) C30—C29—S2 119.01 (19)
C10—C9—S1 120.11 (18) C34—C29—S2 119.74 (19)
C11—C10—C9 119.1 (2) C29—C30—C31 119.1 (2)
C11—C10—H10 120.5 C29—C30—H30 120.4
C9—C10—H10 120.5 C31—C30—H30 120.4
C10—C11—C12 121.7 (2) C30—C31—C32 121.1 (2)
C10—C11—H11 119.2 C30—C31—H31 119.4
C12—C11—H11 119.2 C32—C31—H31 119.4
C13—C12—C11 118.4 (2) C33—C32—C31 117.9 (2)
C13—C12—C15 120.9 (2) C33—C32—C35 121.2 (2)
C11—C12—C15 120.7 (2) C31—C32—C35 120.9 (3)
C14—C13—C12 120.9 (2) C34—C33—C32 121.7 (2)
C14—C13—H13 119.6 C34—C33—H33 119.1
C12—C13—H13 119.6 C32—C33—H33 119.1
C13—C14—C9 119.7 (2) C33—C34—C29 118.8 (2)
C13—C14—H14 120.2 C33—C34—H34 120.6
C9—C14—H14 120.2 C29—C34—H34 120.6
C12—C15—H15A 109.5 C32—C35—H35A 109.5
C12—C15—H15B 109.5 C32—C35—H35B 109.5
H15A—C15—H15B 109.5 H35A—C35—H35B 109.5
C12—C15—H15C 109.5 C32—C35—H35C 109.5
H15A—C15—H15C 109.5 H35A—C35—H35C 109.5
H15B—C15—H15C 109.5 H35B—C35—H35C 109.5
O6—S1—O4—C5 −179.34 (17) O16—S2—O14—C25 −171.83 (16)
O5—S1—O4—C5 −50.06 (19) O15—S2—O14—C25 −42.51 (17)
C9—S1—O4—C5 65.69 (18) C29—S2—O14—C25 73.20 (17)
C4—O1—C1—O2 −105.4 (2) C24—O11—C21—O12 −94.0 (2)
C4—O1—C1—C2 9.2 (3) C24—O11—C21—C22 19.2 (3)
C6—O2—C1—O1 124.0 (2) C26—O12—C21—O11 139.4 (2)
C6—O2—C1—C2 7.8 (3) C26—O12—C21—C22 23.7 (3)
C6—O3—C2—C3 −140.6 (2) C26—O13—C22—C23 −135.6 (2)
C6—O3—C2—C1 −29.8 (3) C26—O13—C22—C21 −23.6 (3)
O1—C1—C2—O3 −105.1 (2) O11—C21—C22—O13 −117.4 (2)
O2—C1—C2—O3 13.4 (3) O12—C21—C22—O13 0.1 (3)
O1—C1—C2—C3 10.4 (3) O11—C21—C22—C23 0.2 (3)
O2—C1—C2—C3 128.9 (2) O12—C21—C22—C23 117.7 (2)
O3—C2—C3—C4 85.9 (2) O13—C22—C23—C24 94.0 (2)
C1—C2—C3—C4 −24.6 (3) C21—C22—C23—C24 −18.0 (3)
C1—O1—C4—C5 97.1 (2) C21—O11—C24—C25 92.0 (3)
C1—O1—C4—C3 −24.9 (2) C21—O11—C24—C23 −30.7 (3)
C2—C3—C4—O1 30.4 (3) C22—C23—C24—O11 29.6 (3)
C2—C3—C4—C5 −91.2 (3) C22—C23—C24—C25 −92.8 (3)
S1—O4—C5—C4 178.03 (15) S2—O14—C25—C24 −177.50 (16)
O1—C4—C5—O4 62.0 (3) O11—C24—C25—O14 63.8 (2)
C3—C4—C5—O4 179.55 (19) C23—C24—C25—O14 −178.25 (19)
C2—O3—C6—O2 35.0 (3) C21—O12—C26—O13 −38.7 (3)
C2—O3—C6—C7 151.4 (2) C21—O12—C26—C27 −155.1 (2)
C2—O3—C6—C8 −83.7 (3) C21—O12—C26—C28 79.9 (3)
C1—O2—C6—O3 −26.1 (3) C22—O13—C26—O12 38.6 (3)
C1—O2—C6—C7 −142.1 (2) C22—O13—C26—C27 155.2 (2)
C1—O2—C6—C8 93.7 (3) C22—O13—C26—C28 −79.2 (2)
O6—S1—C9—C14 138.3 (2) O16—S2—C29—C30 −43.9 (3)
O5—S1—C9—C14 6.1 (3) O15—S2—C29—C30 −176.9 (2)
O4—S1—C9—C14 −110.3 (2) O14—S2—C29—C30 67.2 (2)
O6—S1—C9—C10 −41.2 (3) O16—S2—C29—C34 135.5 (2)
O5—S1—C9—C10 −173.4 (2) O15—S2—C29—C34 2.5 (3)
O4—S1—C9—C10 70.2 (2) O14—S2—C29—C34 −113.4 (2)
C14—C9—C10—C11 −1.4 (4) C34—C29—C30—C31 1.7 (4)
S1—C9—C10—C11 178.1 (2) S2—C29—C30—C31 −178.9 (2)
C9—C10—C11—C12 0.1 (4) C29—C30—C31—C32 0.2 (5)
C10—C11—C12—C13 1.0 (4) C30—C31—C32—C33 −1.6 (5)
C10—C11—C12—C15 −179.3 (3) C30—C31—C32—C35 177.8 (3)
C11—C12—C13—C14 −0.8 (4) C31—C32—C33—C34 1.2 (5)
C15—C12—C13—C14 179.5 (3) C35—C32—C33—C34 −178.1 (3)
C12—C13—C14—C9 −0.4 (4) C32—C33—C34—C29 0.5 (4)
C10—C9—C14—C13 1.6 (4) C30—C29—C34—C33 −2.0 (4)
S1—C9—C14—C13 −177.9 (2) S2—C29—C34—C33 178.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O5i 1.00 2.48 3.390 (3) 152
C5—H5B···O3 0.99 2.56 3.196 (3) 122
C11—H11···O12ii 0.95 2.44 3.163 (3) 133
C14—H14···O5 0.95 2.51 2.897 (3) 105
C24—H24···O15iii 1.00 2.42 3.315 (3) 148
C28—H28C···O6iv 0.98 2.54 3.471 (3) 159
C34—H34···O15 0.95 2.53 2.908 (3) 104

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1; (iv) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2463).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles, in Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier.
  3. Cox, P. J., Howie, R. A., Rufino, H. & Wardell, J. L. (1997). Acta Cryst. C53, 1939–1941.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Dahlman, O., Garegg, P. J., Mayer, H. & Schramek, S. (1986). Acta Chem. Scand. Ser. B, 40, 15–20. [DOI] [PubMed]
  6. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  7. Doboszewski, B. & Herdewijn, P. (1996). Tetrahedron, 52, 1651–1668.
  8. Doboszewski, B. & Herdewijn, P. (2008). Tetrahedron, 64, 5551–5562.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Fieser, L. F. & Fieser, M. (1967). Reagents for Organic Synthesis, Vol. 1, pp. 1179–1181. New York: Wiley.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  13. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Rigaku (2009). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Tipson, R. S. (1944). J. Org. Chem. 9, 235-241.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010884/zl2463sup1.cif

e-68-o1109-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010884/zl2463Isup2.hkl

e-68-o1109-Isup2.hkl (240.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010884/zl2463Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES