Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1113. doi: 10.1107/S160053681201001X

Pyrrolidin-1-ium 2-(naphthalen-1-yl)acetate–2-(naphthalen-1-yl)acetic acid (1/1)

Zhao Hong a, Fu-Jun Yin b,*, Xing-You Xu c, Li-Jun Han d, Li Ren e
PMCID: PMC3344061  PMID: 22589970

Abstract

In the title compound, C4H10N+·C12H9O2 ·C12H10O2, the pyrrolidine ring adopts an envelope conformation and the dihedral angle between the planes of the two naphthalene ring systems is 8.34 (10)°. The crystal structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature  

For the crystal structures of related naphthalene-1-yl-acetate complexes, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011). graphic file with name e-68-o1113-scheme1.jpg

Experimental  

Crystal data  

  • C4H10N+·C12H9O2 ·C12H10O2

  • M r = 443.52

  • Monoclinic, Inline graphic

  • a = 9.4696 (12) Å

  • b = 19.359 (2) Å

  • c = 14.3888 (14) Å

  • β = 115.975 (6)°

  • V = 2371.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.24 × 0.18 × 0.15 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.980, T max = 0.988

  • 21508 measured reflections

  • 5453 independent reflections

  • 3296 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.211

  • S = 1.05

  • 5453 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201001X/wn2468sup1.cif

e-68-o1113-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201001X/wn2468Isup2.hkl

e-68-o1113-Isup2.hkl (261.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201001X/wn2468Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯O2A 0.82 1.77 2.581 (2) 170
N1C—H1C3⋯O2A 0.90 1.83 2.728 (3) 175
N1C—H1C4⋯O1Ai 0.90 1.83 2.719 (3) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Jiangsu Marine Resources Development Research Institute and Huaihai Institute of Technology for support of this work.

supplementary crystallographic information

Comment

1-Naphthyl acetate is well known as a ligand capable of forming transition metal complexes (Yin et al., 2011; Liu et al., 2007; Yang et al., 2008; Tang et al., 2006 ; Ji et al., 2011). We intended to prepare a copper(II) complex of 1-naphthyl acetate and the co-ligand pyrrolidine, but the title compound was obtained and we report its crystal strcture here.

The pyrrolidine ring adopts an envelope conformation, with C1C as the flap atom, and the dihedral angle between the planes of the two naphthalene ring systems is 8.34 (10)° (Fig. 1). The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bond interactions (Fig. 2 and Table 1).

Experimental

The title compound was synthesized by the reaction of 1-naphthylacetic acid (93 mg, 0.5 mmol), pyrrolidine (17.78 mg, 0.25 mmol) and cupric acetate (100 mg, 0.5 mmol), in 16 ml of a water-ethanol (2:1) mixture under solvothermal conditions. The mixture was homogenized and transferred to a sealed Teflon-lined solvothermal bomb (volume 25 ml) and heated to 120°C for three days. After cooling, colorless crystals of the title compound were obtained.

Refinement

All H atoms were positioned geometrically and refined using a riding model with Csp2—H = 0.93 Å, Cmethylene—H = 0.97 Å; O—H = 0.82 Å and N—H = 0.90 Å; Uiso(H) = xUeq(C,N,O), where x = 1.5 for O—H and 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Hydrogen bonding is shown as dashed lines and H atoms not involved in hydrogen bonding are omitted for clarity [Symmetry code: (i) -x+1, -y+1, -z+1].

Crystal data

C4H10N+·C12H9O2·C12H10O2 F(000) = 944
Mr = 443.52 Dx = 1.242 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2134 reflections
a = 9.4696 (12) Å θ = 2.6–26.3°
b = 19.359 (2) Å µ = 0.08 mm1
c = 14.3888 (14) Å T = 298 K
β = 115.975 (6)° Block, colourless
V = 2371.3 (5) Å3 0.24 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5453 independent reflections
Radiation source: fine-focus sealed tube 3296 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.980, Tmax = 0.988 k = −25→25
21508 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.5472P] where P = (Fo2 + 2Fc2)/3
5453 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.43 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.7694 (3) 0.56919 (12) 0.50959 (19) 0.0600 (6)
C2A 0.8778 (3) 0.63106 (13) 0.5294 (2) 0.0737 (7)
H2A1 0.9837 0.6173 0.5766 0.088*
H2A2 0.8789 0.6445 0.4648 0.088*
C3A 0.8323 (3) 0.69269 (12) 0.57397 (19) 0.0647 (6)
C4A 0.9099 (4) 0.70977 (17) 0.6750 (2) 0.0933 (9)
H4A 0.9963 0.6836 0.7179 0.112*
C5A 0.8630 (6) 0.7670 (2) 0.7178 (3) 0.1164 (13)
H5A 0.9199 0.7786 0.7871 0.140*
C6A 0.7344 (6) 0.80433 (19) 0.6562 (3) 0.1088 (11)
H6A 0.7020 0.8407 0.6844 0.131*
C7A 0.6519 (4) 0.78932 (13) 0.5536 (2) 0.0806 (8)
C8A 0.7010 (3) 0.73361 (11) 0.51151 (19) 0.0606 (6)
C9A 0.6117 (3) 0.71985 (14) 0.4042 (2) 0.0791 (7)
H9A 0.6416 0.6832 0.3749 0.095*
C10A 0.4867 (5) 0.75741 (19) 0.3438 (3) 0.1127 (13)
H10A 0.4324 0.7471 0.2739 0.135*
C11A 0.4388 (5) 0.8109 (2) 0.3846 (4) 0.1167 (13)
H11A 0.3505 0.8360 0.3417 0.140*
C12A 0.5152 (4) 0.82859 (16) 0.4856 (4) 0.1041 (11)
H12A 0.4803 0.8657 0.5111 0.125*
O1A 0.7109 (2) 0.55882 (9) 0.56956 (15) 0.0790 (5)
O2A 0.7498 (2) 0.52969 (9) 0.43444 (13) 0.0746 (5)
C1B 0.8789 (2) 0.49657 (11) 0.25477 (15) 0.0510 (5)
C2B 0.9675 (3) 0.51230 (13) 0.19270 (18) 0.0632 (6)
H2B1 1.0765 0.5205 0.2403 0.076*
H2B2 0.9262 0.5549 0.1549 0.076*
C3B 0.9623 (2) 0.45772 (11) 0.11699 (16) 0.0544 (5)
C4B 1.0854 (3) 0.41337 (14) 0.14395 (19) 0.0705 (6)
H4B 1.1685 0.4166 0.2096 0.085*
C5B 1.0904 (3) 0.36336 (15) 0.0760 (2) 0.0816 (8)
H5B 1.1762 0.3337 0.0970 0.098*
C6B 0.9730 (3) 0.35751 (13) −0.0191 (2) 0.0759 (7)
H6B 0.9780 0.3238 −0.0637 0.091*
C7B 0.8406 (3) 0.40219 (12) −0.05298 (17) 0.0606 (6)
C8B 0.8342 (2) 0.45270 (10) 0.01616 (16) 0.0507 (5)
C9B 0.7024 (3) 0.49680 (12) −0.0182 (2) 0.0654 (6)
H9B 0.6957 0.5298 0.0268 0.078*
C10B 0.5854 (3) 0.49204 (17) −0.1154 (2) 0.0854 (8)
H10B 0.4994 0.5215 −0.1362 0.102*
C11B 0.5930 (4) 0.4435 (2) −0.1842 (2) 0.0950 (10)
H11B 0.5133 0.4413 −0.2513 0.114*
C12B 0.7175 (4) 0.39886 (16) −0.1536 (2) 0.0817 (8)
H12B 0.7208 0.3660 −0.1998 0.098*
O1B 0.8904 (2) 0.54736 (8) 0.31785 (13) 0.0770 (5)
H1B 0.8408 0.5377 0.3506 0.115*
O2B 0.80792 (19) 0.44414 (8) 0.24999 (13) 0.0694 (5)
C1C 0.6675 (5) 0.3887 (2) 0.5480 (2) 0.1064 (11)
H1C1 0.7275 0.4240 0.5973 0.128*
H1C2 0.5964 0.3670 0.5713 0.128*
C2C 0.7708 (4) 0.3378 (3) 0.5353 (4) 0.1417 (17)
H2C1 0.7846 0.2987 0.5806 0.170*
H2C2 0.8730 0.3580 0.5527 0.170*
C3C 0.6962 (4) 0.3147 (2) 0.4238 (4) 0.1201 (13)
H3C1 0.7734 0.3138 0.3965 0.144*
H3C2 0.6521 0.2687 0.4178 0.144*
C4C 0.5702 (4) 0.36571 (15) 0.3665 (2) 0.0844 (8)
H4C1 0.5872 0.3868 0.3111 0.101*
H4C2 0.4679 0.3437 0.3373 0.101*
N1C 0.5812 (2) 0.41811 (10) 0.44469 (15) 0.0695 (5)
H1C3 0.6313 0.4559 0.4380 0.083*
H1C4 0.4842 0.4307 0.4351 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0622 (12) 0.0554 (12) 0.0756 (15) 0.0001 (10) 0.0423 (12) 0.0029 (11)
C2A 0.0671 (14) 0.0686 (15) 0.1000 (19) −0.0054 (11) 0.0500 (14) 0.0030 (13)
C3A 0.0682 (14) 0.0604 (13) 0.0689 (12) −0.0184 (11) 0.0333 (11) −0.0001 (11)
C4A 0.096 (2) 0.095 (2) 0.0720 (14) −0.0309 (17) 0.0205 (15) 0.0050 (15)
C5A 0.159 (3) 0.126 (3) 0.0610 (18) −0.062 (3) 0.046 (2) −0.034 (2)
C6A 0.156 (3) 0.086 (2) 0.108 (3) −0.033 (2) 0.079 (3) −0.023 (2)
C7A 0.107 (2) 0.0526 (14) 0.109 (2) −0.0124 (14) 0.0718 (18) −0.0010 (14)
C8A 0.0724 (14) 0.0462 (11) 0.0762 (15) −0.0109 (10) 0.0445 (12) 0.0049 (10)
C9A 0.0936 (18) 0.0656 (15) 0.0737 (16) −0.0201 (14) 0.0325 (14) 0.0098 (13)
C10A 0.115 (3) 0.082 (2) 0.106 (2) −0.023 (2) 0.015 (2) 0.034 (2)
C11A 0.106 (3) 0.081 (2) 0.146 (4) −0.005 (2) 0.040 (3) 0.036 (2)
C12A 0.113 (2) 0.0542 (16) 0.173 (4) 0.0067 (17) 0.088 (3) 0.019 (2)
O1A 0.0956 (12) 0.0729 (11) 0.0980 (13) −0.0223 (9) 0.0697 (11) −0.0171 (9)
O2A 0.0976 (12) 0.0710 (10) 0.0748 (11) −0.0163 (9) 0.0556 (10) −0.0103 (8)
C1B 0.0507 (10) 0.0544 (12) 0.0461 (10) −0.0010 (9) 0.0197 (9) 0.0011 (9)
C2B 0.0696 (13) 0.0701 (14) 0.0590 (12) −0.0166 (11) 0.0366 (11) −0.0117 (11)
C3B 0.0564 (11) 0.0597 (12) 0.0548 (12) −0.0046 (10) 0.0315 (10) 0.0001 (9)
C4B 0.0621 (13) 0.0869 (18) 0.0621 (14) 0.0084 (12) 0.0268 (11) 0.0107 (12)
C5B 0.0839 (17) 0.0836 (18) 0.0889 (19) 0.0283 (14) 0.0484 (16) 0.0166 (15)
C6B 0.104 (2) 0.0592 (14) 0.0893 (19) 0.0052 (13) 0.0657 (17) −0.0066 (13)
C7B 0.0759 (14) 0.0577 (13) 0.0592 (13) −0.0113 (11) 0.0397 (11) −0.0044 (10)
C8B 0.0564 (11) 0.0486 (11) 0.0553 (11) −0.0034 (9) 0.0320 (10) 0.0012 (9)
C9B 0.0627 (13) 0.0634 (14) 0.0743 (15) 0.0031 (11) 0.0340 (12) 0.0071 (11)
C10B 0.0598 (14) 0.097 (2) 0.087 (2) 0.0012 (14) 0.0210 (14) 0.0242 (17)
C11B 0.0810 (19) 0.124 (3) 0.0603 (16) −0.0340 (19) 0.0128 (14) 0.0076 (17)
C12B 0.098 (2) 0.0851 (18) 0.0629 (15) −0.0318 (16) 0.0365 (15) −0.0146 (13)
O1B 0.1145 (14) 0.0647 (10) 0.0784 (11) −0.0216 (9) 0.0669 (11) −0.0151 (8)
O2B 0.0770 (10) 0.0655 (10) 0.0799 (11) −0.0185 (8) 0.0474 (9) −0.0119 (8)
C1C 0.116 (3) 0.111 (3) 0.078 (2) −0.034 (2) 0.0304 (18) 0.0048 (18)
C2C 0.078 (2) 0.205 (5) 0.127 (3) 0.014 (3) 0.032 (2) 0.053 (3)
C3C 0.095 (2) 0.097 (2) 0.163 (4) 0.0124 (19) 0.052 (2) −0.016 (2)
C4C 0.099 (2) 0.0790 (18) 0.0844 (18) 0.0012 (15) 0.0488 (16) −0.0135 (15)
N1C 0.0802 (12) 0.0663 (12) 0.0743 (13) −0.0142 (10) 0.0452 (11) −0.0079 (10)

Geometric parameters (Å, º)

C1A—O1A 1.229 (3) C4B—C5B 1.391 (4)
C1A—O2A 1.270 (3) C4B—H4B 0.9300
C1A—C2A 1.521 (3) C5B—C6B 1.338 (4)
C2A—C3A 1.504 (3) C5B—H5B 0.9300
C2A—H2A1 0.9700 C6B—C7B 1.422 (4)
C2A—H2A2 0.9700 C6B—H6B 0.9300
C3A—C4A 1.352 (4) C7B—C12B 1.408 (4)
C3A—C8A 1.415 (3) C7B—C8B 1.415 (3)
C4A—C5A 1.430 (5) C8B—C9B 1.411 (3)
C4A—H4A 0.9300 C9B—C10B 1.354 (4)
C5A—C6A 1.359 (5) C9B—H9B 0.9300
C5A—H5A 0.9300 C10B—C11B 1.390 (5)
C6A—C7A 1.365 (5) C10B—H10B 0.9300
C6A—H6A 0.9300 C11B—C12B 1.369 (5)
C7A—C8A 1.412 (4) C11B—H11B 0.9300
C7A—C12A 1.450 (5) C12B—H12B 0.9300
C8A—C9A 1.424 (4) O1B—H1B 0.8200
C9A—C10A 1.335 (4) C1C—C2C 1.455 (6)
C9A—H9A 0.9300 C1C—N1C 1.462 (4)
C10A—C11A 1.362 (6) C1C—H1C1 0.9700
C10A—H10A 0.9300 C1C—H1C2 0.9700
C11A—C12A 1.353 (5) C2C—C3C 1.510 (6)
C11A—H11A 0.9300 C2C—H2C1 0.9700
C12A—H12A 0.9300 C2C—H2C2 0.9700
C1B—O2B 1.203 (2) C3C—C4C 1.489 (4)
C1B—O1B 1.310 (2) C3C—H3C1 0.9700
C1B—C2B 1.500 (3) C3C—H3C2 0.9700
C2B—C3B 1.503 (3) C4C—N1C 1.484 (3)
C2B—H2B1 0.9700 C4C—H4C1 0.9700
C2B—H2B2 0.9700 C4C—H4C2 0.9700
C3B—C4B 1.360 (3) N1C—H1C3 0.9000
C3B—C8B 1.430 (3) N1C—H1C4 0.9000
O1A—C1A—O2A 123.8 (2) C6B—C5B—H5B 119.7
O1A—C1A—C2A 118.1 (2) C4B—C5B—H5B 119.7
O2A—C1A—C2A 118.0 (2) C5B—C6B—C7B 120.8 (2)
C3A—C2A—C1A 114.16 (18) C5B—C6B—H6B 119.6
C3A—C2A—H2A1 108.7 C7B—C6B—H6B 119.6
C1A—C2A—H2A1 108.7 C12B—C7B—C8B 118.9 (2)
C3A—C2A—H2A2 108.7 C12B—C7B—C6B 122.2 (2)
C1A—C2A—H2A2 108.7 C8B—C7B—C6B 118.9 (2)
H2A1—C2A—H2A2 107.6 C9B—C8B—C7B 118.4 (2)
C4A—C3A—C8A 117.3 (3) C9B—C8B—C3B 122.8 (2)
C4A—C3A—C2A 122.0 (3) C7B—C8B—C3B 118.79 (19)
C8A—C3A—C2A 120.6 (2) C10B—C9B—C8B 121.2 (3)
C3A—C4A—C5A 121.8 (3) C10B—C9B—H9B 119.4
C3A—C4A—H4A 119.1 C8B—C9B—H9B 119.4
C5A—C4A—H4A 119.1 C9B—C10B—C11B 120.5 (3)
C6A—C5A—C4A 119.4 (3) C9B—C10B—H10B 119.7
C6A—C5A—H5A 120.3 C11B—C10B—H10B 119.7
C4A—C5A—H5A 120.3 C12B—C11B—C10B 120.2 (3)
C5A—C6A—C7A 121.1 (3) C12B—C11B—H11B 119.9
C5A—C6A—H6A 119.4 C10B—C11B—H11B 119.9
C7A—C6A—H6A 119.4 C11B—C12B—C7B 120.7 (3)
C6A—C7A—C8A 119.1 (3) C11B—C12B—H12B 119.7
C6A—C7A—C12A 122.5 (3) C7B—C12B—H12B 119.7
C8A—C7A—C12A 118.4 (3) C1B—O1B—H1B 109.5
C7A—C8A—C3A 121.2 (2) C2C—C1C—N1C 104.1 (3)
C7A—C8A—C9A 117.2 (2) C2C—C1C—H1C1 110.9
C3A—C8A—C9A 121.6 (2) N1C—C1C—H1C1 110.9
C10A—C9A—C8A 122.7 (3) C2C—C1C—H1C2 110.9
C10A—C9A—H9A 118.7 N1C—C1C—H1C2 110.9
C8A—C9A—H9A 118.7 H1C1—C1C—H1C2 109.0
C9A—C10A—C11A 120.1 (4) C1C—C2C—C3C 107.8 (3)
C9A—C10A—H10A 120.0 C1C—C2C—H2C1 110.1
C11A—C10A—H10A 120.0 C3C—C2C—H2C1 110.1
C12A—C11A—C10A 122.2 (4) C1C—C2C—H2C2 110.1
C12A—C11A—H11A 118.9 C3C—C2C—H2C2 110.1
C10A—C11A—H11A 118.9 H2C1—C2C—H2C2 108.5
C11A—C12A—C7A 119.4 (3) C4C—C3C—C2C 106.3 (3)
C11A—C12A—H12A 120.3 C4C—C3C—H3C1 110.5
C7A—C12A—H12A 120.3 C2C—C3C—H3C1 110.5
O2B—C1B—O1B 123.24 (19) C4C—C3C—H3C2 110.5
O2B—C1B—C2B 125.56 (19) C2C—C3C—H3C2 110.5
O1B—C1B—C2B 111.19 (18) H3C1—C3C—H3C2 108.7
C1B—C2B—C3B 116.09 (18) N1C—C4C—C3C 105.1 (3)
C1B—C2B—H2B1 108.3 N1C—C4C—H4C1 110.7
C3B—C2B—H2B1 108.3 C3C—C4C—H4C1 110.7
C1B—C2B—H2B2 108.3 N1C—C4C—H4C2 110.7
C3B—C2B—H2B2 108.3 C3C—C4C—H4C2 110.7
H2B1—C2B—H2B2 107.4 H4C1—C4C—H4C2 108.8
C4B—C3B—C8B 119.1 (2) C1C—N1C—C4C 109.0 (2)
C4B—C3B—C2B 119.0 (2) C1C—N1C—H1C3 109.9
C8B—C3B—C2B 121.8 (2) C4C—N1C—H1C3 109.9
C3B—C4B—C5B 121.9 (2) C1C—N1C—H1C4 109.9
C3B—C4B—H4B 119.1 C4C—N1C—H1C4 109.9
C5B—C4B—H4B 119.1 H1C3—N1C—H1C4 108.3
C6B—C5B—C4B 120.6 (2)
O1A—C1A—C2A—C3A −34.4 (3) C1B—C2B—C3B—C8B 83.3 (3)
O2A—C1A—C2A—C3A 148.4 (2) C8B—C3B—C4B—C5B 0.2 (3)
C1A—C2A—C3A—C4A 103.6 (3) C2B—C3B—C4B—C5B −177.6 (2)
C1A—C2A—C3A—C8A −73.7 (3) C3B—C4B—C5B—C6B 0.2 (4)
C8A—C3A—C4A—C5A −0.4 (4) C4B—C5B—C6B—C7B 0.0 (4)
C2A—C3A—C4A—C5A −177.8 (3) C5B—C6B—C7B—C12B 177.9 (3)
C3A—C4A—C5A—C6A 1.8 (5) C5B—C6B—C7B—C8B −0.6 (4)
C4A—C5A—C6A—C7A −1.8 (5) C12B—C7B—C8B—C9B 1.4 (3)
C5A—C6A—C7A—C8A 0.5 (5) C6B—C7B—C8B—C9B 180.0 (2)
C5A—C6A—C7A—C12A −179.4 (3) C12B—C7B—C8B—C3B −177.58 (19)
C6A—C7A—C8A—C3A 0.9 (3) C6B—C7B—C8B—C3B 1.0 (3)
C12A—C7A—C8A—C3A −179.2 (2) C4B—C3B—C8B—C9B −179.7 (2)
C6A—C7A—C8A—C9A −179.9 (2) C2B—C3B—C8B—C9B −1.9 (3)
C12A—C7A—C8A—C9A 0.0 (3) C4B—C3B—C8B—C7B −0.8 (3)
C4A—C3A—C8A—C7A −1.0 (3) C2B—C3B—C8B—C7B 176.95 (18)
C2A—C3A—C8A—C7A 176.5 (2) C7B—C8B—C9B—C10B −1.0 (3)
C4A—C3A—C8A—C9A 179.9 (2) C3B—C8B—C9B—C10B 177.8 (2)
C2A—C3A—C8A—C9A −2.6 (3) C8B—C9B—C10B—C11B −0.4 (4)
C7A—C8A—C9A—C10A 0.4 (4) C9B—C10B—C11B—C12B 1.4 (4)
C3A—C8A—C9A—C10A 179.5 (2) C10B—C11B—C12B—C7B −1.1 (4)
C8A—C9A—C10A—C11A −0.8 (5) C8B—C7B—C12B—C11B −0.3 (4)
C9A—C10A—C11A—C12A 1.0 (5) C6B—C7B—C12B—C11B −178.9 (2)
C10A—C11A—C12A—C7A −0.7 (5) N1C—C1C—C2C—C3C −25.7 (4)
C6A—C7A—C12A—C11A −179.9 (3) C1C—C2C—C3C—C4C 14.4 (5)
C8A—C7A—C12A—C11A 0.2 (4) C2C—C3C—C4C—N1C 2.8 (4)
O2B—C1B—C2B—C3B 1.4 (3) C2C—C1C—N1C—C4C 28.0 (4)
O1B—C1B—C2B—C3B −179.78 (19) C3C—C4C—N1C—C1C −19.1 (3)
C1B—C2B—C3B—C4B −98.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1B—H1B···O2A 0.82 1.77 2.581 (2) 170
N1C—H1C3···O2A 0.90 1.83 2.728 (3) 175
N1C—H1C4···O1Ai 0.90 1.83 2.719 (3) 169

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2468).

References

  1. Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.
  4. Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.
  7. Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404–408.
  8. Yin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 40, 606–612.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201001X/wn2468sup1.cif

e-68-o1113-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201001X/wn2468Isup2.hkl

e-68-o1113-Isup2.hkl (261.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201001X/wn2468Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES