Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1116. doi: 10.1107/S1600536812011154

5-Amino-3-carb­oxy-1H-1,2,4-triazol-4-ium nitrate monohydrate

Fadila Berrah a,*,, Rafika Bouchene a,, Sofiane Bouacida b,, Thierry Roisnel c
PMCID: PMC3344063  PMID: 22589972

Abstract

The two-dimensional crystal packing of the title compound, C3H5N4O2 +·NO2 ·H2O, results from the stacking of well separated layers (i.e. with nothing between the layers) parallel to the (-113) plane in which adjacent cations adopt a head-to-head arrangement such that two –COOH groups are linked via two water mol­ecules (the water O atom behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH2 groups are linked through two nitrate anions. This arrangement leads to alternating hydro­philic and hydro­phobic zones in which O—H⋯O and N—H⋯O hydrogen bonds, respectively, are observed.

Related literature  

For properties of 1,2,4-triazoles, see: Ouakkaf et al. (2011). For related structures, see: Fernandes et al. (2011); Berrah et al. (2011a ,b ); Jebas et al. (2006).graphic file with name e-68-o1116-scheme1.jpg

Experimental  

Crystal data  

  • C3H5N4O2 +·NO3 ·H2O

  • M r = 209.14

  • Triclinic, Inline graphic

  • a = 4.9934 (13) Å

  • b = 6.7454 (17) Å

  • c = 12.446 (3) Å

  • α = 97.572 (12)°

  • β = 100.524 (13)°

  • γ = 98.933 (13)°

  • V = 401.60 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 150 K

  • 0.42 × 0.2 × 0.11 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.863, T max = 0.982

  • 4012 measured reflections

  • 1821 independent reflections

  • 1563 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.109

  • S = 1.03

  • 1821 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011154/pv2522sup1.cif

e-68-o1116-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011154/pv2522Isup2.hkl

e-68-o1116-Isup2.hkl (87.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011154/pv2522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1W 0.82 1.72 2.5210 (17) 166
O1W—H2W⋯O4i 0.84 (3) 1.97 (3) 2.7985 (18) 166 (2)
O1W—H1W⋯N3ii 0.86 (2) 2.05 (3) 2.9011 (19) 172 (2)
N5—H5B⋯O2iii 0.86 2.04 2.8352 (18) 154
N2—H2⋯O1iii 0.86 2.02 2.8790 (17) 178
N4—H4⋯O1 0.86 2.06 2.9112 (18) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the LCATM laboratory, Université Larbi Ben M’Hidi, Oum El Bouaghi, Algeria, for financial support.

supplementary crystallographic information

Comment

Following our on-going interest on crystal structures of hybrid compounds established by hydrogen bonds and in attempts to clarify anion substitution influence upon hydrogen bonding patterns, we have undertaken synthesis of new compounds using 1,2,4-triazol derivatives and various inorganic acids (Ouakkaf et al., 2011). In this article, we report the preparations and crystal structure of the title compound.

The asymmetric unit of the title compound contains a cation, an anion and a water molecule linked by O—H···O and N—H···O hydrogen bonds (Fig.1.) The geometry of the triazole planar ring is similar to that seen in related compounds (Fernandes et al., 2011; Ouakkaf et al., 2011); it exhibits a short distance of 1.3023 (19) Å showing the double-bond formed between atoms C2 and N3, two intermediat bonds (1.3443 (18) and 1.3529 (19) Å) associated with a delocalized double bond (N4 ≐C3 ≐N2), and two long distances 1.3698 (19) and 1.3779 (18) Å related to the single bonds C2—N2 and N3—N4, respectively.

The two-dimensional network of the title compound results from the stacking of well separated planar layers parallel to (-113) plane (Fig. 2); analogous networks have been observed in other nitrate compounds (Berrah et al., 2011a,b; Jebas et al., 2006). In each layer, the adjacent cations are oriented in a head to head configuration in such a manner that two –COOH groups are linked via two water molecules (H2O behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH2groups are linked through two nitrate anions (Fig. 3 and Table 1). This arrangement leads to an alternating hydrophilic and hydrophobic zones where O—H···O and N—H···O H-bonds are observed, respectively.

Experimental

Colourless crystals of the title compound were grown by slow evaporation of water-methanol (1:1) solution of 5-amino-1,2,4-triazol-1H-3-carboxylic acid hydrate and nitric acid in a 1:1 stoichiometric ratio.

Refinement

The H atoms of the water molecule were located from a difference Fourier map and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located from differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atoms with O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

An asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A two-dimensional network of the title compound viewed along the [1–10] direction. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

A view of the title compound parallel to the (-113 ) plane of the planar infinite layer showing alternating hydrophilic and hydrophobic zones involving O—H···O and N—H···O hydrogen bonds, respectively; hydrogen bonds are shown as dashed lines.

Crystal data

C3H5N4O2+·NO3·H2O Z = 2
Mr = 209.14 F(000) = 216
Triclinic, P1 Dx = 1.729 Mg m3
a = 4.9934 (13) Å Mo Kα radiation, λ = 0.71073 Å
b = 6.7454 (17) Å Cell parameters from 1584 reflections
c = 12.446 (3) Å θ = 3.4–27.4°
α = 97.572 (12)° µ = 0.17 mm1
β = 100.524 (13)° T = 150 K
γ = 98.933 (13)° Stick, colourless
V = 401.60 (18) Å3 0.42 × 0.2 × 0.11 mm

Data collection

Bruker APEXII diffractometer 1563 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −6→6
Tmin = 0.863, Tmax = 0.982 k = −6→8
4012 measured reflections l = −16→15
1821 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0973P] where P = (Fo2 + 2Fc2)/3
1821 reflections (Δ/σ)max < 0.001
134 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1877 (2) −0.15602 (16) 0.31865 (9) 0.0218 (3)
N3 −0.0716 (3) 0.32704 (19) 0.20042 (11) 0.0174 (3)
O4 0.2001 (2) 0.80430 (17) 0.13489 (10) 0.0241 (3)
O5 −0.2192 (2) 0.59982 (18) 0.06811 (10) 0.0234 (3)
H5 −0.2505 0.6888 0.0311 0.035*
O1W −0.3752 (3) 0.82557 (19) −0.06786 (10) 0.0272 (3)
H2W −0.319 (5) 0.946 (4) −0.0762 (18) 0.041*
H1W −0.544 (5) 0.791 (3) −0.1043 (19) 0.041*
N5 0.5272 (3) 0.2985 (2) 0.39298 (11) 0.0219 (3)
H5A 0.4999 0.185 0.4172 0.026*
H5B 0.6829 0.3811 0.4162 0.026*
O2 −0.0623 (2) −0.34292 (17) 0.44188 (10) 0.0284 (3)
O3 0.2143 (2) −0.06970 (17) 0.43144 (10) 0.0262 (3)
N2 0.3435 (2) 0.51522 (18) 0.27273 (10) 0.0158 (3)
H2 0.4806 0.6154 0.2854 0.019*
N4 0.0781 (3) 0.23345 (19) 0.27646 (10) 0.0167 (3)
H4 0.0176 0.1178 0.2937 0.02*
N1 −0.0104 (3) −0.18948 (19) 0.39831 (10) 0.0171 (3)
C3 0.3308 (3) 0.3458 (2) 0.32034 (12) 0.0155 (3)
C2 0.0952 (3) 0.4958 (2) 0.20038 (12) 0.0165 (3)
C1 0.0296 (3) 0.6523 (2) 0.12995 (13) 0.0175 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0199 (5) 0.0212 (6) 0.0216 (6) 0.0009 (4) −0.0034 (4) 0.0088 (5)
N3 0.0166 (6) 0.0160 (6) 0.0191 (7) 0.0023 (5) −0.0004 (5) 0.0077 (5)
O4 0.0237 (6) 0.0185 (6) 0.0289 (6) −0.0007 (5) 0.0009 (5) 0.0109 (5)
O5 0.0219 (6) 0.0198 (6) 0.0261 (6) 0.0013 (5) −0.0043 (5) 0.0114 (5)
O1W 0.0219 (6) 0.0221 (6) 0.0343 (7) −0.0020 (5) −0.0057 (5) 0.0159 (5)
N5 0.0150 (6) 0.0186 (7) 0.0293 (8) −0.0034 (5) −0.0034 (5) 0.0123 (6)
O2 0.0274 (6) 0.0189 (6) 0.0339 (7) −0.0075 (5) −0.0047 (5) 0.0156 (5)
O3 0.0183 (6) 0.0212 (6) 0.0334 (7) −0.0073 (5) −0.0039 (5) 0.0105 (5)
N2 0.0135 (6) 0.0134 (6) 0.0190 (6) −0.0007 (5) 0.0002 (5) 0.0060 (5)
N4 0.0149 (6) 0.0150 (6) 0.0195 (6) 0.0004 (5) −0.0011 (5) 0.0095 (5)
N1 0.0166 (6) 0.0139 (6) 0.0195 (7) −0.0002 (5) 0.0015 (5) 0.0047 (5)
C3 0.0153 (7) 0.0134 (7) 0.0177 (7) 0.0016 (5) 0.0023 (6) 0.0045 (6)
C2 0.0151 (7) 0.0153 (7) 0.0182 (7) 0.0021 (5) 0.0008 (6) 0.0042 (6)
C1 0.0201 (7) 0.0136 (7) 0.0187 (7) 0.0022 (6) 0.0031 (6) 0.0053 (6)

Geometric parameters (Å, º)

O1—N1 1.2720 (16) N5—H5B 0.86
N3—C2 1.3023 (19) O2—N1 1.2443 (16)
N3—N4 1.3779 (18) O3—N1 1.2426 (16)
O4—C1 1.2139 (18) N2—C3 1.3529 (19)
O5—C1 1.3051 (19) N2—C2 1.3698 (19)
O5—H5 0.82 N2—H2 0.86
O1W—H2W 0.84 (3) N4—C3 1.3443 (18)
O1W—H1W 0.86 (2) N4—H4 0.86
N5—C3 1.3155 (19) C2—C1 1.495 (2)
N5—H5A 0.86
C2—N3—N4 103.98 (12) O3—N1—O2 120.44 (13)
C1—O5—H5 109.5 O3—N1—O1 119.79 (12)
H2W—O1W—H1W 107 (2) O2—N1—O1 119.77 (12)
C3—N5—H5A 120 N5—C3—N4 126.95 (13)
C3—N5—H5B 120 N5—C3—N2 127.13 (13)
H5A—N5—H5B 120 N4—C3—N2 105.91 (12)
C3—N2—C2 106.57 (12) N3—C2—N2 112.16 (13)
C3—N2—H2 126.7 N3—C2—C1 124.96 (14)
C2—N2—H2 126.7 N2—C2—C1 122.89 (13)
C3—N4—N3 111.38 (12) O4—C1—O5 128.33 (15)
C3—N4—H4 124.3 O4—C1—C2 120.16 (14)
N3—N4—H4 124.3 O5—C1—C2 111.50 (13)
C2—N3—N4—C3 −0.23 (16) C3—N2—C2—N3 0.52 (17)
N3—N4—C3—N5 −178.18 (15) C3—N2—C2—C1 −179.10 (13)
N3—N4—C3—N2 0.55 (16) N3—C2—C1—O4 −179.23 (15)
C2—N2—C3—N5 178.10 (15) N2—C2—C1—O4 0.3 (2)
C2—N2—C3—N4 −0.62 (15) N3—C2—C1—O5 0.5 (2)
N4—N3—C2—N2 −0.18 (16) N2—C2—C1—O5 −179.93 (13)
N4—N3—C2—C1 179.43 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O1W 0.82 1.72 2.5210 (17) 166
O1W—H2W···O4i 0.84 (3) 1.97 (3) 2.7985 (18) 166 (2)
O1W—H1W···N3ii 0.86 (2) 2.05 (3) 2.9011 (19) 172 (2)
N5—H5A···O3 0.86 2.1 2.8672 (18) 148
N5—H5A···O3iii 0.86 2.44 3.0498 (19) 129
N5—H5B···O2iv 0.86 2.04 2.8352 (18) 154
N5—H5B···O2iii 0.86 2.41 3.0060 (18) 127
N2—H2···O1iv 0.86 2.02 2.8790 (17) 178
N4—H4···O1 0.86 2.06 2.9112 (18) 171
N4—H4···O3 0.86 2.42 3.0590 (18) 132
N4—H4···N1 0.86 2.59 3.4099 (19) 160

Symmetry codes: (i) −x, −y+2, −z; (ii) −x−1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2522).

References

  1. Berrah, F., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o2057–o2058. [DOI] [PMC free article] [PubMed]
  2. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Fernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073–o2074. [DOI] [PMC free article] [PubMed]
  9. Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.
  10. Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011154/pv2522sup1.cif

e-68-o1116-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011154/pv2522Isup2.hkl

e-68-o1116-Isup2.hkl (87.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011154/pv2522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES