Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1117. doi: 10.1107/S1600536812011087

7-Chloro-4-[(7-chloro­quinolin-4-yl)sulfan­yl]quinoline dihydrate

James L Wardell a,, Edward R T Tiekink b,*
PMCID: PMC3344064  PMID: 22589973

Abstract

In the title thio­ether dihydrate, C18H10Cl2N2S·2H2O, the S-bound quinolinyl residues are almost orthogonal, forming a dihedral angle of 72.36 (4)°. In the crystal, the four water mol­ecules are connected via an eight-membered {⋯OH}4 synthon with each of the four pendent water H atoms hydrogen bonded to a pyridine N atom to stabilize a three-dimensional architecture.

Related literature  

For background to the significant biological activities exhibited by quinoline derivatives, see: Natarajan et al. (2008). For an earlier synthesis, see: Surrey (1948).graphic file with name e-68-o1117-scheme1.jpg

Experimental  

Crystal data  

  • C18H10Cl2N2S·2H2O

  • M r = 393.27

  • Monoclinic, Inline graphic

  • a = 7.8228 (2) Å

  • b = 11.5596 (3) Å

  • c = 19.2421 (13) Å

  • β = 97.384 (7)°

  • V = 1725.60 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 120 K

  • 0.07 × 0.07 × 0.03 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) T min = 0.930, T max = 1.000

  • 36518 measured reflections

  • 3943 independent reflections

  • 3512 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.076

  • S = 1.04

  • 3943 reflections

  • 238 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011087/pk2399sup1.cif

e-68-o1117-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011087/pk2399Isup2.hkl

e-68-o1117-Isup2.hkl (189.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011087/pk2399Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1 0.85 (1) 2.02 (1) 2.8530 (15) 171 (2)
O1W—H2W⋯O2Wi 0.84 (1) 1.94 (1) 2.7723 (14) 173 (2)
O2W—H3W⋯N2 0.85 (2) 2.01 (2) 2.8429 (14) 165 (1)
O2W—H4W⋯O1Wii 0.85 (1) 1.94 (2) 2.7683 (14) 166 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

supplementary crystallographic information

Comment

Interest in the title compound, bis(7-chloroquinolin-4-yl)sulfide, crystallized as a dihydrate, rests with the biological activity of related quinoline derivatives, in particular against chloroquine-resistant malaria (Natarajan et al., 2008).

In (I), Fig. 1, the dihedral angle between the two quinolinyl residues [r.m.s. deviation for the 10 atoms of the N1- and N2-systems = 0.018 and 0.011 Å, respectively] of 72.36 (4)° indicates an almost orthogonal relationship.

The water molecules play a pivotal role in stabilizing the crystal structure, forming hydrogen bonds to each other and to the quinolinyl-N atoms, Table 1. The water···water interactions each to eight-membered {···OH}4 synthons with each pendent water-H atom hydrogen bonded to a quinolinyl-N atom to stabilize a three-dimensional architecture, Fig. 2.

Experimental

A modification of a published procedure was adopted (Natarajan et al., 2008). A solution of 4,7-dichloroquinoline (0.5 g) in EtOH (20 ml) was heated to 323 K. Thiourea (0.20 g.) was added and the mixture was stirred for 5 min. and then cooled to room temperature. The white solid was filtered off and was extracted into 0.2 M NaOH solution. The precipitate, bis(7-chloroquinolin-4-yl)sulfide, was collected and recrystallized from EtOH as the dihydrate; M.pt. 436–439 K; lit. M.pt: 439–440 K (Surrey, 1948).

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H atoms were located in a difference Fourier map, and were refined with a distance restraint of O—H = 0.84±0.01 Å and with H···H = 1.39±0.03 Å; their Uiso values were constrained to 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a of the unit-cell contents of (I). The O—H···O and O—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.

Crystal data

C18H10Cl2N2S·2H2O F(000) = 808
Mr = 393.27 Dx = 1.514 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 30445 reflections
a = 7.8228 (2) Å θ = 3.2–27.5°
b = 11.5596 (3) Å µ = 0.51 mm1
c = 19.2421 (13) Å T = 120 K
β = 97.384 (7)° Chip, colourless
V = 1725.60 (13) Å3 0.07 × 0.07 × 0.03 mm
Z = 4

Data collection

Rigaku Saturn724+ diffractometer 3943 independent reflections
Radiation source: Rotating Anode 3512 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.029
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.2°
profile data from ω–scans h = −10→10
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) k = −15→15
Tmin = 0.930, Tmax = 1.000 l = −24→24
36518 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.5608P] where P = (Fo2 + 2Fc2)/3
3943 reflections (Δ/σ)max = 0.002
238 parameters Δρmax = 0.46 e Å3
6 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85633 (5) 1.32103 (3) 0.808816 (19) 0.03066 (10)
Cl2 −0.32119 (4) 0.87710 (3) 1.034518 (16) 0.02406 (9)
S1 0.06139 (4) 1.02020 (3) 0.737790 (16) 0.01827 (9)
N1 0.52489 (13) 1.07717 (9) 0.61826 (5) 0.0175 (2)
N2 0.23604 (14) 0.80256 (9) 0.93354 (5) 0.0177 (2)
C1 0.39198 (17) 1.01334 (11) 0.59386 (7) 0.0189 (2)
H1 0.3906 0.9805 0.5485 0.023*
C2 0.25041 (16) 0.99018 (11) 0.63076 (7) 0.0185 (2)
H2 0.1584 0.9422 0.6108 0.022*
C3 0.24849 (15) 1.03816 (11) 0.69563 (6) 0.0162 (2)
C4 0.38920 (15) 1.10900 (10) 0.72461 (6) 0.0153 (2)
C5 0.40017 (16) 1.16405 (11) 0.79070 (6) 0.0182 (2)
H5 0.3077 1.1563 0.8179 0.022*
C6 0.54164 (17) 1.22826 (11) 0.81616 (7) 0.0202 (3)
H6 0.5484 1.2640 0.8609 0.024*
C7 0.67699 (16) 1.24043 (11) 0.77498 (7) 0.0200 (3)
C8 0.67128 (16) 1.19187 (11) 0.71010 (7) 0.0185 (2)
H8 0.7634 1.2031 0.6831 0.022*
C9 0.52619 (16) 1.12451 (10) 0.68348 (6) 0.0156 (2)
C10 0.13671 (15) 0.93878 (10) 0.81318 (6) 0.0157 (2)
C11 0.29263 (16) 0.88236 (11) 0.82280 (6) 0.0175 (2)
H11 0.3700 0.8880 0.7887 0.021*
C12 0.33593 (16) 0.81603 (11) 0.88393 (7) 0.0180 (2)
H12 0.4448 0.7784 0.8898 0.022*
C13 0.07979 (15) 0.85759 (10) 0.92474 (6) 0.0158 (2)
C14 −0.02935 (16) 0.84226 (11) 0.97723 (6) 0.0181 (2)
H14 0.0063 0.7951 1.0169 0.022*
C15 −0.18652 (16) 0.89577 (11) 0.97044 (6) 0.0186 (2)
C16 −0.24385 (16) 0.96705 (11) 0.91269 (7) 0.0197 (3)
H16 −0.3530 1.0041 0.9095 0.024*
C17 −0.14015 (16) 0.98214 (11) 0.86128 (7) 0.0187 (2)
H17 −0.1785 1.0297 0.8221 0.022*
C18 0.02362 (15) 0.92796 (10) 0.86552 (6) 0.0158 (2)
O1W 0.84280 (13) 1.08318 (9) 0.56043 (6) 0.0273 (2)
H1W 0.7463 (16) 1.0890 (16) 0.5755 (10) 0.041*
H2W 0.862 (2) 1.0129 (9) 0.5534 (10) 0.041*
O2W 0.41907 (12) 0.64316 (8) 1.02803 (5) 0.02027 (19)
H3W 0.3515 (19) 0.6916 (13) 1.0055 (8) 0.030*
H4W 0.5009 (17) 0.6346 (15) 1.0038 (8) 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02726 (18) 0.02886 (19) 0.0343 (2) −0.01172 (13) −0.00194 (14) −0.00641 (14)
Cl2 0.02222 (16) 0.03008 (18) 0.02149 (16) −0.00523 (12) 0.00896 (12) −0.00083 (12)
S1 0.01414 (15) 0.02233 (16) 0.01838 (16) 0.00074 (11) 0.00224 (11) 0.00574 (11)
N1 0.0181 (5) 0.0184 (5) 0.0162 (5) 0.0031 (4) 0.0028 (4) 0.0020 (4)
N2 0.0176 (5) 0.0164 (5) 0.0184 (5) −0.0002 (4) −0.0002 (4) 0.0014 (4)
C1 0.0206 (6) 0.0213 (6) 0.0146 (5) 0.0025 (5) 0.0017 (4) −0.0001 (5)
C2 0.0175 (6) 0.0192 (6) 0.0179 (6) −0.0017 (5) −0.0014 (5) 0.0005 (5)
C3 0.0156 (5) 0.0166 (6) 0.0166 (6) 0.0013 (4) 0.0024 (4) 0.0042 (4)
C4 0.0164 (5) 0.0134 (5) 0.0159 (5) 0.0015 (4) 0.0017 (4) 0.0028 (4)
C5 0.0215 (6) 0.0171 (6) 0.0163 (6) 0.0009 (5) 0.0034 (5) 0.0012 (5)
C6 0.0262 (6) 0.0163 (6) 0.0176 (6) 0.0006 (5) 0.0008 (5) −0.0004 (5)
C7 0.0189 (6) 0.0151 (6) 0.0244 (6) −0.0022 (5) −0.0028 (5) 0.0009 (5)
C8 0.0172 (6) 0.0165 (6) 0.0219 (6) 0.0005 (5) 0.0026 (5) 0.0038 (5)
C9 0.0171 (5) 0.0141 (5) 0.0154 (5) 0.0025 (4) 0.0014 (4) 0.0029 (4)
C10 0.0168 (5) 0.0136 (5) 0.0163 (5) −0.0020 (4) 0.0002 (4) 0.0003 (4)
C11 0.0162 (6) 0.0187 (6) 0.0180 (6) −0.0006 (5) 0.0033 (4) 0.0000 (5)
C12 0.0157 (6) 0.0169 (6) 0.0209 (6) 0.0009 (4) 0.0007 (4) 0.0002 (5)
C13 0.0165 (6) 0.0139 (5) 0.0166 (6) −0.0027 (4) 0.0007 (4) −0.0018 (4)
C14 0.0210 (6) 0.0163 (6) 0.0165 (6) −0.0040 (5) 0.0011 (5) 0.0001 (4)
C15 0.0195 (6) 0.0196 (6) 0.0177 (6) −0.0060 (5) 0.0056 (5) −0.0033 (5)
C16 0.0165 (6) 0.0198 (6) 0.0228 (6) 0.0000 (5) 0.0027 (5) −0.0020 (5)
C17 0.0177 (6) 0.0180 (6) 0.0201 (6) 0.0003 (5) 0.0019 (5) 0.0017 (5)
C18 0.0159 (5) 0.0146 (6) 0.0166 (6) −0.0021 (4) 0.0012 (4) −0.0016 (4)
O1W 0.0249 (5) 0.0254 (5) 0.0344 (6) −0.0013 (4) 0.0139 (4) −0.0043 (4)
O2W 0.0209 (5) 0.0223 (5) 0.0178 (4) 0.0023 (4) 0.0029 (3) 0.0030 (4)

Geometric parameters (Å, º)

Cl1—C7 1.7394 (13) C8—C9 1.4169 (17)
Cl2—C15 1.7351 (12) C8—H8 0.9500
S1—C10 1.7657 (12) C10—C11 1.3745 (17)
S1—C3 1.7745 (13) C10—C18 1.4289 (17)
N1—C1 1.3116 (17) C11—C12 1.4084 (17)
N1—C9 1.3680 (16) C11—H11 0.9500
N2—C12 1.3183 (16) C12—H12 0.9500
N2—C13 1.3690 (16) C13—C14 1.4150 (17)
C1—C2 1.4158 (18) C13—C18 1.4228 (17)
C1—H1 0.9500 C14—C15 1.3675 (18)
C2—C3 1.3677 (18) C14—H14 0.9500
C2—H2 0.9500 C15—C16 1.4097 (18)
C3—C4 1.4267 (17) C16—C17 1.3687 (18)
C4—C5 1.4148 (17) C16—H16 0.9500
C4—C9 1.4229 (17) C17—C18 1.4189 (17)
C5—C6 1.3697 (18) C17—H17 0.9500
C5—H5 0.9500 O1W—H1W 0.846 (9)
C6—C7 1.4087 (19) O1W—H2W 0.841 (9)
C6—H6 0.9500 O2W—H3W 0.850 (9)
C7—C8 1.3643 (19) O2W—H4W 0.844 (9)
C10—S1—C3 103.31 (6) C11—C10—C18 118.85 (11)
C1—N1—C9 117.74 (11) C11—C10—S1 124.08 (10)
C12—N2—C13 117.29 (10) C18—C10—S1 117.02 (9)
N1—C1—C2 124.20 (12) C10—C11—C12 119.00 (11)
N1—C1—H1 117.9 C10—C11—H11 120.5
C2—C1—H1 117.9 C12—C11—H11 120.5
C3—C2—C1 118.82 (12) N2—C12—C11 124.59 (11)
C3—C2—H2 120.6 N2—C12—H12 117.7
C1—C2—H2 120.6 C11—C12—H12 117.7
C2—C3—C4 119.41 (11) N2—C13—C14 117.68 (11)
C2—C3—S1 118.44 (10) N2—C13—C18 122.93 (11)
C4—C3—S1 121.92 (9) C14—C13—C18 119.39 (11)
C5—C4—C9 118.70 (11) C15—C14—C13 119.52 (11)
C5—C4—C3 124.34 (11) C15—C14—H14 120.2
C9—C4—C3 116.96 (11) C13—C14—H14 120.2
C6—C5—C4 121.20 (12) C14—C15—C16 122.06 (11)
C6—C5—H5 119.4 C14—C15—Cl2 119.77 (10)
C4—C5—H5 119.4 C16—C15—Cl2 118.18 (10)
C5—C6—C7 118.95 (12) C17—C16—C15 119.09 (12)
C5—C6—H6 120.5 C17—C16—H16 120.5
C7—C6—H6 120.5 C15—C16—H16 120.5
C8—C7—C6 122.35 (12) C16—C17—C18 121.12 (12)
C8—C7—Cl1 119.53 (10) C16—C17—H17 119.4
C6—C7—Cl1 118.12 (10) C18—C17—H17 119.4
C7—C8—C9 119.17 (11) C17—C18—C13 118.82 (11)
C7—C8—H8 120.4 C17—C18—C10 123.85 (11)
C9—C8—H8 120.4 C13—C18—C10 117.33 (11)
N1—C9—C8 117.56 (11) H1W—O1W—H2W 108.5 (17)
N1—C9—C4 122.86 (11) H3W—O2W—H4W 105.2 (15)
C8—C9—C4 119.59 (11)
C9—N1—C1—C2 −0.18 (19) C3—S1—C10—C11 −14.13 (12)
N1—C1—C2—C3 1.1 (2) C3—S1—C10—C18 168.56 (9)
C1—C2—C3—C4 −0.61 (18) C18—C10—C11—C12 −0.14 (18)
C1—C2—C3—S1 174.00 (9) S1—C10—C11—C12 −177.40 (9)
C10—S1—C3—C2 116.54 (10) C13—N2—C12—C11 −0.28 (18)
C10—S1—C3—C4 −68.99 (11) C10—C11—C12—N2 0.63 (19)
C2—C3—C4—C5 179.25 (12) C12—N2—C13—C14 179.10 (11)
S1—C3—C4—C5 4.83 (17) C12—N2—C13—C18 −0.54 (17)
C2—C3—C4—C9 −0.62 (17) N2—C13—C14—C15 179.97 (11)
S1—C3—C4—C9 −175.03 (9) C18—C13—C14—C15 −0.37 (18)
C9—C4—C5—C6 −2.04 (18) C13—C14—C15—C16 −0.46 (19)
C3—C4—C5—C6 178.10 (12) C13—C14—C15—Cl2 179.87 (9)
C4—C5—C6—C7 0.84 (19) C14—C15—C16—C17 0.85 (19)
C5—C6—C7—C8 0.96 (19) Cl2—C15—C16—C17 −179.47 (10)
C5—C6—C7—Cl1 −179.30 (10) C15—C16—C17—C18 −0.39 (19)
C6—C7—C8—C9 −1.46 (19) C16—C17—C18—C13 −0.41 (18)
Cl1—C7—C8—C9 178.80 (9) C16—C17—C18—C10 179.01 (12)
C1—N1—C9—C8 179.02 (11) N2—C13—C18—C17 −179.57 (11)
C1—N1—C9—C4 −1.18 (17) C14—C13—C18—C17 0.80 (17)
C7—C8—C9—N1 180.00 (11) N2—C13—C18—C10 0.97 (17)
C7—C8—C9—C4 0.20 (18) C14—C13—C18—C10 −178.66 (11)
C5—C4—C9—N1 −178.29 (11) C11—C10—C18—C17 179.98 (12)
C3—C4—C9—N1 1.58 (17) S1—C10—C18—C17 −2.57 (16)
C5—C4—C9—C8 1.50 (17) C11—C10—C18—C13 −0.59 (17)
C3—C4—C9—C8 −178.63 (11) S1—C10—C18—C13 176.86 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···N1 0.85 (1) 2.02 (1) 2.8530 (15) 171 (2)
O1W—H2W···O2Wi 0.84 (1) 1.94 (1) 2.7723 (14) 173 (2)
O2W—H3W···N2 0.85 (2) 2.01 (2) 2.8429 (14) 165 (1)
O2W—H4W···O1Wii 0.85 (1) 1.94 (2) 2.7683 (14) 166 (2)

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2399).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Natarajan, J. K., Alumasa, J., Yearick, K., Ekoue-Kovi, K. A., Casabianca, L. B., de Dios, A. C., Wolf, C. & Roepe, P. D. (2008). J. Med. Chem. 51, 3466—3479. [DOI] [PMC free article] [PubMed]
  4. Rigaku (2011). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Surrey, A. R. (1948). J. Am. Chem. Soc. 70, 2190–2193.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011087/pk2399sup1.cif

e-68-o1117-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011087/pk2399Isup2.hkl

e-68-o1117-Isup2.hkl (189.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011087/pk2399Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES