Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1118–o1119. doi: 10.1107/S1600536812011129

3-Amino-1-(3,4-dimeth­oxy­phen­yl)-9,10-dihydro­phenanthrene-2,4-dicarbonitrile

Abdullah M Asiri a,b,, Hassan M Faidallah a, Khalid A Alamry a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3344065  PMID: 22589974

Abstract

In the title compound, C24H19N3O2, the partially saturated ring adopts a distorted half-chair conformation with the methyl­ene-C atom closest to the amino­benzene ring lying 0.664 (3) Å out of the plane defined by the five remaining atoms (r.m.s. deviation = 0.1429 Å. The dihedral angle [32.01 (10)°] between the benzene rings on either side of this ring indicates a significant fold in this part of the mol­ecule. The dimeth­oxy-substituted benzene ring is almost orthogonal to the benzene ring to which it is attached [dihedral angle = 72.03 (9)°]. The mol­ecule has been observed previously as the major component of a 1:19 co-crystal with 2-amino-4-(3,4-dimeth­oxy­phen­yl)-5,6-dihydro­benzo[ha]quinoline-3-carbonitrile [Asiri et al. (2011). Acta Cryst. E67, o2873–o2873]. Supra­molecular chains with base vector [201] are formed in the crystal structure via N—H⋯O hydrogen bonds between the amino H atoms of one mol­ecule inter­acting with the meth­oxy O atoms of a neighbouring mol­ecule. The chains are linked into a three-dimensional architecture by C—H⋯π inter­actions.

Related literature  

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a ,b ); Al-Youbi et al. (2012).graphic file with name e-68-o1118-scheme1.jpg

Experimental  

Crystal data  

  • C24H19N3O2

  • M r = 381.42

  • Monoclinic, Inline graphic

  • a = 8.9360 (7) Å

  • b = 14.5007 (11) Å

  • c = 14.8074 (11) Å

  • β = 103.471 (8)°

  • V = 1865.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.983, T max = 0.991

  • 8105 measured reflections

  • 4272 independent reflections

  • 2851 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.136

  • S = 1.03

  • 4272 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011129/sj5212sup1.cif

e-68-o1118-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011129/sj5212Isup2.hkl

e-68-o1118-Isup2.hkl (209.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011129/sj5212Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.95 (2) 2.23 (2) 2.921 (2) 129 (2)
N2—H2⋯O2i 0.90 (3) 2.28 (3) 2.984 (2) 135 (2)
C24—H24BCg1ii 0.98 2.78 3.538 (2) 135
C7—H7ACg4iii 0.99 2.92 3.792 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The X-ray crystallographic investigation of the title compound, 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I), was motivated by reports of the biological activity of related compounds (Wang et al., 2010; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011a; Al-Youbi et al., 2012). The molecule of (I) has been observed previously in its 1/19 co-crystal with 2-amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzo[ha]quinoline-3-carbonitrile (Asiri et al., 2011b).

In (I), Fig. 1, the partially saturated ring adopts a distorted twisted half chair conformation with the C2 atom lying 0.664 (3) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1429 Å; maximum deviations = 0.1733 (11) Å for the C9 atom and -0.2097 (14) Å for the C10 atom]. The dihedral angle between the benzene rings on either side of this ring = 32.01 (10)°, indicating a significant fold in this part of the molecule. The dimethoxy-substituted benzene ring is almost normal to the plane of the benzene ring to which it is attached, forming a dihedral angle of 72.03 (9)° The O1-and O2-methoxy substituents are each slightly twisted out of the plane of the benzene ring to which they are attached as seen in the values of the C23—O1—C19—C18 and C24—O2—C20—C21 torsion angles of -13.7 (3) and -5.0 (3)°, respectively; they lie to opposite sides of the plane through the benzene ting.

The most prominent feature in the crystal packing is the formation of N—H···O hydrogen bonds whereby the amino-H atoms are connected to the two methoxy-O atoms of a neighbouring molecule leading to a seven-membered {···HNH···OC2O} synthon linked into twisted supramolecular chains, Fig. 2 and Table 1; the base vector is along [2 0 1]. Clearly, the presence of two oxygen atoms in (I), is sufficient to disrupt the normally formed N—H···N hydrogen bonds between centrosymmetrically related molecules leading to to 12-membered {···HNC3N}2 synthons (Asiri et al., 2011a; Asiri et al., 2011b). Supramolecular chains are sustained in a three-dimensional architecture by C—H···π interactions, Fig. 3 and Table 1.

Experimental

A mixture of 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mmol), 1-tetralone (1.46 g, 0.01 mmol), malononitrile (0.66 g, 0.01 mmol) and ammonium acetate (6.2 g, 0.08 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool. The precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol. Yield: 69%, M. pt. 533–535 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (1 15 5) reflection was omitted from the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

The supramolecular chain in (I) sustained by N—H···O hydrogen bonds shown as blue dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The N—H···O hydrogen bonds and C—H···π interactions are shown as blue and purple dashed lines, respectively.

Crystal data

C24H19N3O2 F(000) = 800
Mr = 381.42 Dx = 1.358 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2185 reflections
a = 8.9360 (7) Å θ = 2.4–27.5°
b = 14.5007 (11) Å µ = 0.09 mm1
c = 14.8074 (11) Å T = 100 K
β = 103.471 (8)° Chip, orange
V = 1865.9 (2) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4272 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2851 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.7°
ω scan h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −18→17
Tmin = 0.983, Tmax = 0.991 l = −11→19
8105 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.2552P] where P = (Fo2 + 2Fc2)/3
4272 reflections (Δ/σ)max = 0.001
270 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.69410 (14) 0.85996 (10) 0.89152 (10) 0.0255 (4)
O2 0.92377 (14) 0.80208 (9) 0.82524 (9) 0.0215 (3)
N1 −0.21440 (18) 0.47271 (12) 0.60427 (12) 0.0271 (4)
N2 −0.0035 (2) 0.62438 (13) 0.51881 (12) 0.0243 (4)
N3 0.31457 (19) 0.75869 (13) 0.50677 (13) 0.0278 (4)
C1 0.1055 (2) 0.47341 (14) 0.82665 (13) 0.0231 (5)
C2 −0.0456 (2) 0.47157 (15) 0.83797 (15) 0.0289 (5)
H2A −0.1234 0.5058 0.7968 0.035*
C3 −0.0831 (3) 0.42019 (16) 0.90882 (16) 0.0347 (6)
H3 −0.1859 0.4194 0.9160 0.042*
C4 0.0298 (3) 0.37015 (16) 0.96890 (16) 0.0393 (6)
H4 0.0038 0.3338 1.0164 0.047*
C5 0.1807 (3) 0.37300 (15) 0.95975 (15) 0.0350 (6)
H5 0.2576 0.3388 1.0014 0.042*
C6 0.2208 (2) 0.42536 (15) 0.89025 (14) 0.0279 (5)
C7 0.3846 (2) 0.43614 (15) 0.88204 (15) 0.0313 (5)
H7A 0.4029 0.3973 0.8307 0.038*
H7B 0.4561 0.4162 0.9403 0.038*
C8 0.4127 (2) 0.53735 (15) 0.86299 (14) 0.0273 (5)
H8A 0.3967 0.5760 0.9151 0.033*
H8B 0.5200 0.5459 0.8573 0.033*
C9 0.3017 (2) 0.56644 (14) 0.77347 (13) 0.0215 (4)
C10 0.1525 (2) 0.52829 (14) 0.75366 (13) 0.0207 (4)
C11 0.0532 (2) 0.54618 (13) 0.66663 (13) 0.0182 (4)
C12 0.0953 (2) 0.60554 (13) 0.60093 (13) 0.0189 (4)
C13 0.2426 (2) 0.64665 (13) 0.62557 (13) 0.0186 (4)
C14 0.3445 (2) 0.62742 (13) 0.71120 (13) 0.0198 (4)
C15 −0.0950 (2) 0.50286 (14) 0.63642 (14) 0.0221 (4)
C16 0.2857 (2) 0.70935 (14) 0.56101 (14) 0.0210 (4)
C17 0.4968 (2) 0.67539 (14) 0.73596 (13) 0.0199 (4)
C18 0.5213 (2) 0.74481 (14) 0.80346 (14) 0.0215 (5)
H18 0.4402 0.7623 0.8315 0.026*
C19 0.6633 (2) 0.78845 (13) 0.82984 (13) 0.0193 (4)
C20 0.7852 (2) 0.75935 (13) 0.79148 (13) 0.0182 (4)
C21 0.7588 (2) 0.69338 (14) 0.72295 (14) 0.0241 (5)
H21 0.8394 0.6761 0.6944 0.029*
C22 0.6146 (2) 0.65146 (15) 0.69485 (14) 0.0249 (5)
H22 0.5977 0.6062 0.6471 0.030*
C23 0.5626 (2) 0.90343 (16) 0.91355 (16) 0.0333 (6)
H23A 0.5969 0.9532 0.9583 0.050*
H23B 0.5047 0.8578 0.9405 0.050*
H23C 0.4963 0.9289 0.8568 0.050*
C24 1.0509 (2) 0.76905 (15) 0.79032 (15) 0.0257 (5)
H24A 1.1434 0.8047 0.8181 0.039*
H24B 1.0274 0.7762 0.7227 0.039*
H24C 1.0688 0.7038 0.8063 0.039*
H1 −0.105 (3) 0.5996 (17) 0.5047 (17) 0.044 (7)*
H2 0.028 (3) 0.6568 (18) 0.4750 (18) 0.040 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0178 (7) 0.0281 (8) 0.0307 (8) 0.0001 (6) 0.0057 (6) −0.0119 (7)
O2 0.0141 (6) 0.0248 (8) 0.0260 (7) −0.0022 (5) 0.0054 (5) −0.0058 (6)
N1 0.0207 (9) 0.0277 (10) 0.0327 (10) −0.0014 (7) 0.0060 (7) 0.0010 (8)
N2 0.0186 (9) 0.0298 (11) 0.0222 (9) −0.0030 (7) −0.0002 (7) 0.0048 (8)
N3 0.0257 (9) 0.0278 (10) 0.0300 (10) −0.0031 (7) 0.0065 (8) 0.0015 (9)
C1 0.0304 (11) 0.0185 (11) 0.0196 (10) −0.0063 (8) 0.0040 (8) −0.0041 (9)
C2 0.0353 (12) 0.0265 (12) 0.0266 (11) −0.0058 (9) 0.0111 (9) −0.0031 (10)
C3 0.0497 (15) 0.0289 (13) 0.0306 (12) −0.0118 (10) 0.0193 (11) −0.0060 (10)
C4 0.0641 (17) 0.0315 (14) 0.0255 (12) −0.0142 (12) 0.0170 (11) −0.0022 (11)
C5 0.0537 (15) 0.0264 (13) 0.0213 (11) −0.0054 (11) 0.0016 (10) 0.0002 (10)
C6 0.0400 (13) 0.0228 (12) 0.0179 (10) −0.0055 (9) 0.0008 (9) −0.0011 (9)
C7 0.0355 (12) 0.0286 (13) 0.0232 (11) 0.0008 (9) −0.0063 (9) 0.0025 (10)
C8 0.0278 (11) 0.0302 (12) 0.0203 (10) −0.0025 (9) −0.0020 (8) −0.0014 (10)
C9 0.0222 (10) 0.0198 (11) 0.0200 (10) 0.0011 (8) −0.0001 (8) −0.0023 (9)
C10 0.0229 (10) 0.0191 (11) 0.0196 (10) −0.0005 (8) 0.0038 (8) −0.0020 (9)
C11 0.0161 (9) 0.0168 (10) 0.0221 (9) −0.0009 (7) 0.0049 (7) −0.0037 (8)
C12 0.0163 (9) 0.0192 (10) 0.0202 (9) 0.0017 (7) 0.0025 (7) −0.0024 (8)
C13 0.0164 (9) 0.0177 (10) 0.0221 (10) −0.0003 (7) 0.0055 (7) −0.0015 (8)
C14 0.0163 (9) 0.0206 (10) 0.0223 (10) 0.0021 (8) 0.0036 (8) −0.0048 (9)
C15 0.0241 (10) 0.0220 (11) 0.0215 (10) 0.0001 (8) 0.0080 (8) 0.0011 (9)
C16 0.0165 (10) 0.0221 (11) 0.0234 (10) −0.0007 (8) 0.0026 (8) −0.0029 (9)
C17 0.0155 (9) 0.0217 (10) 0.0206 (10) 0.0007 (8) 0.0001 (7) 0.0006 (9)
C18 0.0152 (9) 0.0264 (11) 0.0229 (10) 0.0026 (8) 0.0042 (8) −0.0011 (9)
C19 0.0188 (10) 0.0190 (10) 0.0185 (9) 0.0019 (8) 0.0009 (7) −0.0034 (8)
C20 0.0132 (9) 0.0200 (10) 0.0203 (10) 0.0014 (7) 0.0013 (7) 0.0023 (8)
C21 0.0177 (10) 0.0292 (12) 0.0266 (11) −0.0009 (8) 0.0078 (8) −0.0060 (9)
C22 0.0206 (10) 0.0298 (12) 0.0232 (10) −0.0008 (8) 0.0030 (8) −0.0078 (9)
C23 0.0241 (11) 0.0366 (14) 0.0410 (13) 0.0009 (9) 0.0109 (9) −0.0171 (11)
C24 0.0177 (10) 0.0287 (12) 0.0323 (11) −0.0027 (8) 0.0087 (8) −0.0074 (10)

Geometric parameters (Å, º)

O1—C19 1.367 (2) C8—H8B 0.9900
O1—C23 1.437 (2) C9—C14 1.394 (3)
O2—C20 1.371 (2) C9—C10 1.410 (3)
O2—C24 1.436 (2) C10—C11 1.408 (2)
N1—C15 1.149 (2) C11—C12 1.414 (3)
N2—C12 1.354 (2) C11—C15 1.440 (3)
N2—H1 0.95 (2) C12—C13 1.413 (3)
N2—H2 0.90 (3) C13—C14 1.406 (2)
N3—C16 1.149 (3) C13—C16 1.435 (3)
C1—C2 1.400 (3) C14—C17 1.496 (3)
C1—C6 1.408 (3) C17—C22 1.377 (3)
C1—C10 1.479 (3) C17—C18 1.400 (3)
C2—C3 1.390 (3) C18—C19 1.390 (3)
C2—H2A 0.9500 C18—H18 0.9500
C3—C4 1.384 (3) C19—C20 1.405 (3)
C3—H3 0.9500 C20—C21 1.374 (3)
C4—C5 1.387 (3) C21—C22 1.398 (3)
C4—H4 0.9500 C21—H21 0.9500
C5—C6 1.391 (3) C22—H22 0.9500
C5—H5 0.9500 C23—H23A 0.9800
C6—C7 1.504 (3) C23—H23B 0.9800
C7—C8 1.526 (3) C23—H23C 0.9800
C7—H7A 0.9900 C24—H24A 0.9800
C7—H7B 0.9900 C24—H24B 0.9800
C8—C9 1.518 (2) C24—H24C 0.9800
C8—H8A 0.9900
C19—O1—C23 115.90 (15) C12—C11—C15 115.13 (16)
C20—O2—C24 116.20 (15) N2—C12—C13 121.33 (19)
C12—N2—H1 120.6 (15) N2—C12—C11 121.24 (17)
C12—N2—H2 120.2 (15) C13—C12—C11 117.39 (16)
H1—N2—H2 119 (2) C14—C13—C12 121.20 (18)
C2—C1—C6 119.1 (2) C14—C13—C16 120.53 (17)
C2—C1—C10 122.94 (18) C12—C13—C16 118.26 (16)
C6—C1—C10 117.84 (19) C9—C14—C13 120.14 (17)
C3—C2—C1 120.6 (2) C9—C14—C17 120.47 (16)
C3—C2—H2A 119.7 C13—C14—C17 119.35 (18)
C1—C2—H2A 119.7 N1—C15—C11 173.3 (2)
C4—C3—C2 119.9 (2) N3—C16—C13 177.17 (19)
C4—C3—H3 120.0 C22—C17—C18 119.25 (18)
C2—C3—H3 120.0 C22—C17—C14 121.31 (18)
C3—C4—C5 120.0 (2) C18—C17—C14 119.43 (18)
C3—C4—H4 120.0 C19—C18—C17 120.58 (19)
C5—C4—H4 120.0 C19—C18—H18 119.7
C4—C5—C6 120.8 (2) C17—C18—H18 119.7
C4—C5—H5 119.6 O1—C19—C18 124.16 (18)
C6—C5—H5 119.6 O1—C19—C20 116.35 (16)
C5—C6—C1 119.4 (2) C18—C19—C20 119.49 (18)
C5—C6—C7 122.66 (19) O2—C20—C21 124.66 (18)
C1—C6—C7 117.94 (19) O2—C20—C19 115.86 (17)
C6—C7—C8 108.65 (18) C21—C20—C19 119.47 (17)
C6—C7—H7A 110.0 C20—C21—C22 120.66 (19)
C8—C7—H7A 110.0 C20—C21—H21 119.7
C6—C7—H7B 110.0 C22—C21—H21 119.7
C8—C7—H7B 110.0 C17—C22—C21 120.35 (19)
H7A—C7—H7B 108.3 C17—C22—H22 119.8
C9—C8—C7 109.05 (16) C21—C22—H22 119.8
C9—C8—H8A 109.9 O1—C23—H23A 109.5
C7—C8—H8A 109.9 O1—C23—H23B 109.5
C9—C8—H8B 109.9 H23A—C23—H23B 109.5
C7—C8—H8B 109.9 O1—C23—H23C 109.5
H8A—C8—H8B 108.3 H23A—C23—H23C 109.5
C14—C9—C10 120.23 (16) H23B—C23—H23C 109.5
C14—C9—C8 121.98 (17) O2—C24—H24A 109.5
C10—C9—C8 117.78 (18) O2—C24—H24B 109.5
C11—C10—C9 118.79 (18) H24A—C24—H24B 109.5
C11—C10—C1 122.85 (17) O2—C24—H24C 109.5
C9—C10—C1 118.33 (16) H24A—C24—H24C 109.5
C10—C11—C12 122.02 (16) H24B—C24—H24C 109.5
C10—C11—C15 122.79 (18)
C6—C1—C2—C3 −2.5 (3) C11—C12—C13—C14 1.5 (3)
C10—C1—C2—C3 −178.78 (19) N2—C12—C13—C16 −0.1 (3)
C1—C2—C3—C4 −0.1 (3) C11—C12—C13—C16 −178.12 (18)
C2—C3—C4—C5 1.5 (3) C10—C9—C14—C13 −4.1 (3)
C3—C4—C5—C6 −0.4 (3) C8—C9—C14—C13 174.73 (19)
C4—C5—C6—C1 −2.2 (3) C10—C9—C14—C17 173.87 (19)
C4—C5—C6—C7 175.3 (2) C8—C9—C14—C17 −7.3 (3)
C2—C1—C6—C5 3.6 (3) C12—C13—C14—C9 0.4 (3)
C10—C1—C6—C5 −179.94 (18) C16—C13—C14—C9 −179.99 (19)
C2—C1—C6—C7 −174.09 (19) C12—C13—C14—C17 −177.60 (18)
C10—C1—C6—C7 2.4 (3) C16—C13—C14—C17 2.0 (3)
C5—C6—C7—C8 −135.7 (2) C9—C14—C17—C22 107.8 (2)
C1—C6—C7—C8 41.9 (2) C13—C14—C17—C22 −74.2 (3)
C6—C7—C8—C9 −59.5 (2) C9—C14—C17—C18 −71.0 (3)
C7—C8—C9—C14 −143.2 (2) C13—C14—C17—C18 106.9 (2)
C7—C8—C9—C10 35.7 (3) C22—C17—C18—C19 −0.9 (3)
C14—C9—C10—C11 5.8 (3) C14—C17—C18—C19 177.97 (18)
C8—C9—C10—C11 −173.11 (18) C23—O1—C19—C18 −13.7 (3)
C14—C9—C10—C1 −172.40 (19) C23—O1—C19—C20 165.87 (18)
C8—C9—C10—C1 8.7 (3) C17—C18—C19—O1 176.45 (17)
C2—C1—C10—C11 −31.5 (3) C17—C18—C19—C20 −3.1 (3)
C6—C1—C10—C11 152.19 (19) C24—O2—C20—C21 −5.0 (3)
C2—C1—C10—C9 146.6 (2) C24—O2—C20—C19 176.54 (17)
C6—C1—C10—C9 −29.7 (3) O1—C19—C20—O2 4.2 (2)
C9—C10—C11—C12 −3.9 (3) C18—C19—C20—O2 −176.20 (17)
C1—C10—C11—C12 174.20 (19) O1—C19—C20—C21 −174.28 (17)
C9—C10—C11—C15 173.50 (19) C18—C19—C20—C21 5.3 (3)
C1—C10—C11—C15 −8.4 (3) O2—C20—C21—C22 178.03 (18)
C10—C11—C12—N2 −177.79 (19) C19—C20—C21—C22 −3.6 (3)
C15—C11—C12—N2 4.6 (3) C18—C17—C22—C21 2.6 (3)
C10—C11—C12—C13 0.3 (3) C14—C17—C22—C21 −176.20 (18)
C15—C11—C12—C13 −177.29 (18) C20—C21—C22—C17 −0.4 (3)
N2—C12—C13—C14 179.56 (19)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H1···O1i 0.95 (2) 2.23 (2) 2.921 (2) 129 (2)
N2—H2···O2i 0.90 (3) 2.28 (3) 2.984 (2) 135 (2)
C24—H24B···Cg1ii 0.98 2.78 3.538 (2) 135
C7—H7A···Cg4iii 0.99 2.92 3.792 (2) 147

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5212).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873. [DOI] [PMC free article] [PubMed]
  4. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2449. [DOI] [PMC free article] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011129/sj5212sup1.cif

e-68-o1118-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011129/sj5212Isup2.hkl

e-68-o1118-Isup2.hkl (209.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011129/sj5212Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES