Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1123. doi: 10.1107/S1600536812011099

Dimethyl­ammonium guanidinium naphthalene-1,5-disulfonate

Bin Wei a,*
PMCID: PMC3344069  PMID: 22589978

Abstract

The asymmetric unit of the title salt, CH6N3 +·C2H8N+·C10H6O6S2 2−, consists of one dimethyl­ammonium cation, one guanidinium cation, and two half naphthalene-1,5-disulfonate anions, which lie on inversion centers. N—H⋯O hydrogen bonds link the cations and anions into layers parallel to the ab plane. The layers have a sandwich-like structure, with the sulfonate groups and cations forming outer slices and the naphthalene ring systems inside.

Related literature  

For nanoporous materials with two-dimensional hydrogen-bonded networks, see: Russell et al. (1997). For recent studies of organic and organic–inorganic salts with ferroelectric properties, see: Fu et al. (2009); Wu et al. (2011). For general background to structure phase transitions in closely related compounds, see: Ye et al. (2009); Zhang et al. (2010).graphic file with name e-68-o1123-scheme1.jpg

Experimental  

Crystal data  

  • CH6N3 +·C2H8N+·C10H6O6S2 2−

  • M r = 392.45

  • Triclinic, Inline graphic

  • a = 8.7782 (18) Å

  • b = 9.0316 (18) Å

  • c = 11.923 (2) Å

  • α = 87.10 (3)°

  • β = 74.74 (3)°

  • γ = 88.77 (3)°

  • V = 910.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.936, T max = 0.937

  • 9502 measured reflections

  • 4168 independent reflections

  • 3097 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.121

  • S = 1.04

  • 4168 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011099/yk2047sup1.cif

e-68-o1123-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011099/yk2047Isup2.hkl

e-68-o1123-Isup2.hkl (204.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011099/yk2047Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1i 0.86 2.10 2.916 (3) 159
N1—H1E⋯O5 0.86 2.02 2.825 (3) 157
N2—H2D⋯O6ii 0.86 2.12 2.942 (3) 160
N2—H2E⋯O2 0.86 2.08 2.921 (3) 164
N3—H3A⋯O4 0.86 2.24 3.084 (3) 167
N3—H3B⋯O3 0.86 2.11 2.940 (3) 163
N4—H4A⋯O6iii 0.90 2.12 3.011 (3) 168
N4—H4A⋯O5iii 0.90 2.50 3.133 (3) 128
N4—H4B⋯O1iv 0.90 2.60 3.152 (3) 121
N4—H4B⋯O2iv 0.90 2.04 2.914 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Recently a series of nanoporous materials has been reported, which have two-dimensional hydrogen-bond networks and adjustable porosity (Russell et al., 1997). Guanidinium ions and the sulfonate groups of arenedisulfonate ions can form rich variety of H-bonds. We prepared the title compound in attempts to find new hydrogen-bonded dielectric materials consisting of guanidinium and naphthalene-1,5-disulfonate ions. Unfortunately, the study of dielectric permeability of the title compound indicated that its dielectric constant is essentially temperature-independent below its melting point (388 — 390 K). Thus we have found that the title compound has no dielectric disuniform from 80 K to 405 K.

At room temperature (25°C), the asymmetric unit of the title compound consists of one dimethylammonium cation, one guanidinium cation, and two halves of naphthalene-1,5-disulfonate anions, which lie at inversion centers (Fig. 1). The N—H···O hydrogen bonds join cations and anions into layers parallel to the ab plane. Layers have sandwich-like structure: sulfonate groups and cations form outer slices and naphthalene bicycles are inside. (Fig. 2).

Experimental

The 1,5-naphthalenedisulfonic acid (1.824 g 8 mmol) and guanidinium tetrafluoroborate (0.588 g 4 mmol) were combined in 30 ml aqueous solution, and methanol solution of dimethylamine (0.326 g 4 mmol) was added to the mixture. The solution was stirred for 30 min to complete the reaction, and good quality blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (chemical yield is 62%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.91—0.93 Å, N—H = 0.86 Å and with Uiso(H) = 1.2 Uiso(C, N) or 1.5 Uiso(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing of the title compound. Dashed lines indicate hydrogen bonds.

Crystal data

CH6N3+·C2H8N+·C10H6O6S22 Z = 2
Mr = 392.45 F(000) = 412
Triclinic, P1 Dx = 1.431 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7782 (18) Å Cell parameters from 3638 reflections
b = 9.0316 (18) Å θ = 3.0–27.5°
c = 11.923 (2) Å µ = 0.33 mm1
α = 87.10 (3)° T = 293 K
β = 74.74 (3)° Block, colourless
γ = 88.77 (3)° 0.20 × 0.20 × 0.20 mm
V = 910.7 (3) Å3

Data collection

Rigaku SCXmini diffractometer 4168 independent reflections
Radiation source: fine-focus sealed tube 3097 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −11→11
Tmin = 0.936, Tmax = 0.937 k = −11→11
9502 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.289P] where P = (Fo2 + 2Fc2)/3
4168 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56454 (6) 0.60040 (6) 0.20852 (5) 0.04580 (17)
O1 0.72470 (18) 0.64764 (18) 0.19535 (15) 0.0537 (4)
O2 0.47542 (19) 0.71224 (18) 0.15867 (15) 0.0554 (4)
O3 0.5537 (2) 0.45431 (18) 0.16728 (16) 0.0605 (5)
C4 0.4733 (2) 0.5921 (2) 0.3610 (2) 0.0444 (5)
C5 0.3440 (3) 0.6794 (3) 0.4035 (2) 0.0574 (6)
H5 0.3017 0.7376 0.3523 0.069*
C6 0.2749 (3) 0.6819 (3) 0.5227 (3) 0.0650 (7)
H6 0.1878 0.7430 0.5500 0.078*
C7 0.3320 (3) 0.5973 (3) 0.5998 (2) 0.0523 (6)
H7 0.2843 0.6018 0.6791 0.063*
C8 0.4640 (2) 0.5017 (2) 0.5607 (2) 0.0427 (5)
C3 0.1383 (3) 0.4844 (2) 0.12679 (19) 0.0427 (5)
C1 0.6168 (4) 0.1027 (3) 0.0828 (3) 0.0689 (7)
H1A 0.5056 0.1163 0.0916 0.103*
H1B 0.6669 0.0753 0.0049 0.103*
H1C 0.6613 0.1934 0.0978 0.103*
C2 0.5666 (4) 0.0162 (4) 0.2865 (3) 0.0827 (9)
H2A 0.6138 0.1018 0.3077 0.124*
H2B 0.5807 −0.0678 0.3355 0.124*
H2C 0.4559 0.0344 0.2961 0.124*
N1 −0.0065 (2) 0.4450 (2) 0.1321 (2) 0.0606 (6)
H1D −0.0779 0.5115 0.1317 0.073*
H1E −0.0300 0.3526 0.1361 0.073*
N2 0.1747 (3) 0.6261 (2) 0.12075 (19) 0.0590 (5)
H2D 0.1034 0.6928 0.1203 0.071*
H2E 0.2697 0.6517 0.1173 0.071*
N3 0.2482 (2) 0.3819 (2) 0.12657 (18) 0.0556 (5)
H3A 0.2247 0.2896 0.1299 0.067*
H3B 0.3432 0.4077 0.1231 0.067*
N4 0.6420 (3) −0.0140 (2) 0.1648 (2) 0.0598 (6)
H4A 0.7465 −0.0261 0.1558 0.072*
H4B 0.6042 −0.0995 0.1478 0.072*
C9 −0.0137 (2) −0.0556 (2) 0.3530 (2) 0.0429 (5)
C10 −0.0994 (3) −0.1839 (2) 0.3832 (2) 0.0513 (6)
H10 −0.1247 −0.2368 0.3256 0.062*
C11 −0.1487 (3) −0.2353 (3) 0.4988 (2) 0.0553 (6)
H11 −0.2053 −0.3231 0.5174 0.066*
C12 −0.1155 (3) −0.1596 (2) 0.5852 (2) 0.0471 (5)
H12 −0.1513 −0.1950 0.6622 0.057*
C13 −0.0266 (2) −0.0268 (2) 0.55895 (19) 0.0400 (5)
S2 0.03040 (7) 0.01286 (6) 0.20605 (5) 0.04819 (17)
O4 0.1966 (2) 0.0447 (2) 0.16779 (16) 0.0668 (5)
O5 −0.0671 (2) 0.14568 (17) 0.20878 (16) 0.0590 (5)
O6 −0.0188 (2) −0.10150 (18) 0.14233 (15) 0.0602 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0427 (3) 0.0350 (3) 0.0622 (4) −0.0011 (2) −0.0178 (3) −0.0047 (2)
O1 0.0424 (9) 0.0513 (10) 0.0678 (11) −0.0067 (7) −0.0152 (8) −0.0002 (8)
O2 0.0584 (10) 0.0448 (9) 0.0686 (11) 0.0028 (7) −0.0273 (9) 0.0006 (8)
O3 0.0678 (11) 0.0400 (9) 0.0772 (12) −0.0006 (8) −0.0229 (9) −0.0146 (8)
C4 0.0360 (11) 0.0324 (11) 0.0651 (15) 0.0022 (8) −0.0140 (10) −0.0035 (10)
C5 0.0471 (13) 0.0504 (14) 0.0751 (18) 0.0144 (11) −0.0185 (12) 0.0007 (12)
C6 0.0512 (14) 0.0605 (16) 0.0755 (19) 0.0291 (12) −0.0060 (13) −0.0005 (13)
C7 0.0422 (12) 0.0445 (13) 0.0643 (16) 0.0123 (10) −0.0045 (11) −0.0032 (11)
C8 0.0332 (10) 0.0270 (10) 0.0672 (14) 0.0005 (8) −0.0113 (9) −0.0049 (9)
C3 0.0430 (12) 0.0413 (12) 0.0410 (12) −0.0017 (9) −0.0073 (9) 0.0038 (9)
C1 0.083 (2) 0.0507 (16) 0.0703 (19) 0.0003 (14) −0.0156 (15) −0.0022 (13)
C2 0.091 (2) 0.087 (2) 0.069 (2) −0.0184 (18) −0.0177 (17) −0.0047 (16)
N1 0.0445 (11) 0.0447 (11) 0.0905 (16) −0.0045 (9) −0.0166 (11) 0.0133 (11)
N2 0.0546 (12) 0.0397 (11) 0.0831 (16) −0.0032 (9) −0.0198 (11) 0.0034 (10)
N3 0.0431 (11) 0.0402 (11) 0.0812 (15) −0.0005 (8) −0.0131 (10) 0.0006 (10)
N4 0.0527 (12) 0.0479 (12) 0.0803 (16) 0.0023 (9) −0.0204 (11) −0.0036 (10)
C9 0.0386 (11) 0.0312 (10) 0.0617 (14) 0.0016 (8) −0.0181 (10) −0.0046 (9)
C10 0.0539 (13) 0.0364 (12) 0.0693 (17) −0.0070 (10) −0.0249 (12) −0.0084 (11)
C11 0.0559 (14) 0.0379 (12) 0.0763 (18) −0.0165 (10) −0.0238 (13) −0.0006 (11)
C12 0.0428 (12) 0.0356 (11) 0.0636 (15) −0.0065 (9) −0.0151 (10) −0.0003 (10)
C13 0.0296 (10) 0.0284 (10) 0.0645 (14) 0.0024 (8) −0.0162 (9) −0.0051 (9)
S2 0.0479 (3) 0.0357 (3) 0.0614 (4) −0.0034 (2) −0.0142 (3) −0.0054 (2)
O4 0.0489 (10) 0.0736 (13) 0.0720 (12) −0.0070 (9) −0.0026 (8) −0.0166 (10)
O5 0.0647 (11) 0.0373 (9) 0.0733 (12) 0.0020 (8) −0.0168 (9) 0.0048 (8)
O6 0.0807 (12) 0.0417 (9) 0.0647 (11) −0.0087 (8) −0.0296 (9) −0.0050 (8)

Geometric parameters (Å, º)

S1—O1 1.4442 (16) C2—H2C 0.9600
S1—O3 1.4448 (17) N1—H1D 0.8600
S1—O2 1.4614 (17) N1—H1E 0.8600
S1—C4 1.782 (3) N2—H2D 0.8600
C4—C5 1.366 (3) N2—H2E 0.8600
C4—C8i 1.436 (3) N3—H3A 0.8600
C5—C6 1.392 (4) N3—H3B 0.8600
C5—H5 0.9300 N4—H4A 0.9000
C6—C7 1.354 (4) N4—H4B 0.9000
C6—H6 0.9300 C9—C10 1.375 (3)
C7—C8 1.421 (3) C9—C13ii 1.437 (3)
C7—H7 0.9300 C9—S2 1.774 (2)
C8—C8i 1.421 (5) C10—C11 1.391 (3)
C8—C4i 1.436 (3) C10—H10 0.9300
C3—N1 1.312 (3) C11—C12 1.362 (3)
C3—N2 1.320 (3) C11—H11 0.9300
C3—N3 1.322 (3) C12—C13 1.421 (3)
C1—N4 1.454 (3) C12—H12 0.9300
C1—H1A 0.9600 C13—C13ii 1.422 (4)
C1—H1B 0.9600 C13—C9ii 1.437 (3)
C1—H1C 0.9600 S2—O4 1.4404 (18)
C2—N4 1.465 (4) S2—O6 1.4496 (17)
C2—H2A 0.9600 S2—O5 1.4552 (17)
C2—H2B 0.9600
O1—S1—O3 113.70 (11) C3—N1—H1D 120.0
O1—S1—O2 111.13 (10) C3—N1—H1E 120.0
O3—S1—O2 112.70 (11) H1D—N1—H1E 120.0
O1—S1—C4 105.95 (10) C3—N2—H2D 120.0
O3—S1—C4 107.12 (11) C3—N2—H2E 120.0
O2—S1—C4 105.59 (10) H2D—N2—H2E 120.0
C5—C4—C8i 120.0 (2) C3—N3—H3A 120.0
C5—C4—S1 118.99 (19) C3—N3—H3B 120.0
C8i—C4—S1 121.01 (16) H3A—N3—H3B 120.0
C4—C5—C6 120.5 (2) C1—N4—C2 113.6 (2)
C4—C5—H5 119.7 C1—N4—H4A 108.9
C6—C5—H5 119.7 C2—N4—H4A 108.9
C7—C6—C5 121.4 (2) C1—N4—H4B 108.9
C7—C6—H6 119.3 C2—N4—H4B 108.9
C5—C6—H6 119.3 H4A—N4—H4B 107.7
C6—C7—C8 120.6 (2) C10—C9—C13ii 120.2 (2)
C6—C7—H7 119.7 C10—C9—S2 118.36 (18)
C8—C7—H7 119.7 C13ii—C9—S2 121.21 (16)
C8i—C8—C7 118.6 (3) C9—C10—C11 120.6 (2)
C8i—C8—C4i 118.8 (2) C9—C10—H10 119.7
C7—C8—C4i 122.6 (2) C11—C10—H10 119.7
N1—C3—N2 120.1 (2) C12—C11—C10 121.2 (2)
N1—C3—N3 119.9 (2) C12—C11—H11 119.4
N2—C3—N3 119.9 (2) C10—C11—H11 119.4
N4—C1—H1A 109.5 C11—C12—C13 120.5 (2)
N4—C1—H1B 109.5 C11—C12—H12 119.7
H1A—C1—H1B 109.5 C13—C12—H12 119.7
N4—C1—H1C 109.5 C12—C13—C13ii 119.2 (2)
H1A—C1—H1C 109.5 C12—C13—C9ii 122.6 (2)
H1B—C1—H1C 109.5 C13ii—C13—C9ii 118.3 (2)
N4—C2—H2A 109.5 O4—S2—O6 113.80 (11)
N4—C2—H2B 109.5 O4—S2—O5 112.38 (11)
H2A—C2—H2B 109.5 O6—S2—O5 111.31 (11)
N4—C2—H2C 109.5 O4—S2—C9 108.35 (11)
H2A—C2—H2C 109.5 O6—S2—C9 105.83 (10)
H2B—C2—H2C 109.5 O5—S2—C9 104.46 (10)
O1—S1—C4—C5 119.8 (2) C13ii—C9—C10—C11 0.3 (3)
O3—S1—C4—C5 −118.5 (2) S2—C9—C10—C11 −174.47 (18)
O2—S1—C4—C5 1.8 (2) C9—C10—C11—C12 0.9 (4)
O1—S1—C4—C8i −58.72 (19) C10—C11—C12—C13 −1.2 (4)
O3—S1—C4—C8i 62.98 (19) C11—C12—C13—C13ii 0.4 (4)
O2—S1—C4—C8i −176.68 (16) C11—C12—C13—C9ii −178.9 (2)
C8i—C4—C5—C6 2.1 (4) C10—C9—S2—O4 −130.74 (19)
S1—C4—C5—C6 −176.5 (2) C13ii—C9—S2—O4 54.60 (19)
C4—C5—C6—C7 −0.8 (4) C10—C9—S2—O6 −8.3 (2)
C5—C6—C7—C8 −0.7 (4) C13ii—C9—S2—O6 177.01 (16)
C6—C7—C8—C8i 0.8 (4) C10—C9—S2—O5 109.27 (19)
C6—C7—C8—C4i −178.7 (2) C13ii—C9—S2—O5 −65.39 (18)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1D···O1iii 0.86 2.10 2.916 (3) 159
N1—H1E···O5 0.86 2.02 2.825 (3) 157
N2—H2D···O6iv 0.86 2.12 2.942 (3) 160
N2—H2E···O2 0.86 2.08 2.921 (3) 164
N3—H3A···O4 0.86 2.24 3.084 (3) 167
N3—H3B···O3 0.86 2.11 2.940 (3) 163
N4—H4A···O6v 0.90 2.12 3.011 (3) 168
N4—H4A···O5v 0.90 2.50 3.133 (3) 128
N4—H4B···O1vi 0.90 2.60 3.152 (3) 121
N4—H4B···O2vi 0.90 2.04 2.914 (3) 163

Symmetry codes: (iii) x−1, y, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2047).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Russell, V. A., Evans, C. C., Li, W. J. & Ward, M. D. (1997). Science, 276, 575–579. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.
  6. Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43. [DOI] [PubMed]
  7. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011099/yk2047sup1.cif

e-68-o1123-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011099/yk2047Isup2.hkl

e-68-o1123-Isup2.hkl (204.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011099/yk2047Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES