Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1124. doi: 10.1107/S1600536812011105

5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methyl­phen­yl)-4,5-dihydro­furan-3-carbonitrile

J Suresh a, R Vishnupriya a, P Gunasekaran b, S Perumal b, P L Nilantha Lakshman c,*
PMCID: PMC3344070  PMID: 22589979

Abstract

The furan ring in the title compound, C27H20N2O2, adopts a twisted conformation about the sp 3sp 3 bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action which generates an S(6) ring motif. The crystal packing is stabilized by N—H⋯O and C—H⋯O inter­actions generating centrosymmetric R 2 2(18) and C(6) chain motifs, respectively. A weak C—H⋯π inter­action is also observed.

Related literature  

For the biological importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding graph-set notation, see: Bernstein et al. (1995). For additional conformation analysis, see: Cremer & Pople (1975).graphic file with name e-68-o1124-scheme1.jpg

Experimental  

Crystal data  

  • C27H20N2O2

  • M r = 404.45

  • Monoclinic, Inline graphic

  • a = 9.8084 (4) Å

  • b = 15.9553 (7) Å

  • c = 13.8782 (7) Å

  • β = 107.185 (2)°

  • V = 2074.92 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.12 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.974

  • 21144 measured reflections

  • 4647 independent reflections

  • 3017 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.133

  • S = 1.02

  • 4647 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011105/tk5068sup1.cif

e-68-o1124-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011105/tk5068Isup2.hkl

e-68-o1124-Isup2.hkl (227.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011105/tk5068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C51–C56 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1 0.93 2.52 3.032 (2) 115
N2—H2⋯O2i 0.91 (2) 2.04 (2) 2.880 (2) 154
C44—H44⋯O2ii 0.93 2.55 3.329 (3) 142
C34—H34⋯Cg1iii 0.93 2.69 3.556 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. PG thanks the CSIR for a Junior and Senior Research Fellowship. SP thanks the Department of Science and Technology, New Delhi, for funding the Indo-Spanish collaborative major research project (grant No. DST/INT/SPAIN/09).

supplementary crystallographic information

Comment

Furanyl derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin et al., 2005). The high medicinal value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound (Fig 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975) Q = 0.192 (2) Å and φ = 129.0 (6)°. The five-(N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.74 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 15.24 (1)°.

Fig. 2 shows the partial packing of molecules in the crystal structure. The C—H···O and N—H···O intermolecular interactions generate C11(6) chain and centrosymmetric R22(18) motifs, respectively (Bernstein et al., 1995). In addition, there is a weak C—H···π interaction, viz, C34—H34···Cg1ii, Table 1.

Experimental

To a stirred mixture of 2-(1H-indole-3-carbonyl)-3-p-tolylacrylonitrile (1.0 molar eq.) and phenacylpyridinium bromide (1.0 molar eq.) in water (10 ml) was added drop wise triethylamine (0.25 molar eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 1 h. Then, the separated free flowing solid was filtered and washed with methanol (3 ml) to afford the title compound as a pale-yellow solid. The product thus obtained was recrystallized from an EtOH-EtOAc mixture (1:1 ratio v/v ml) to the give pure compound as pale-yellow crystals. Yield: 92%. M.pt: 502 K.

Refinement

The H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2–1.5Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The partial packing diagram of (I). The C—H···O and N—H···O interactions are shown as blue lines.

Crystal data

C27H20N2O2 F(000) = 848
Mr = 404.45 Dx = 1.295 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2000 reflections
a = 9.8084 (4) Å θ = 2–31°
b = 15.9553 (7) Å µ = 0.08 mm1
c = 13.8782 (7) Å T = 293 K
β = 107.185 (2)° Block, pale-yellow
V = 2074.92 (16) Å3 0.19 × 0.15 × 0.12 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 4647 independent reflections
Radiation source: fine-focus sealed tube 3017 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 0 pixels mm-1 θmax = 27.3°, θmin = 2.0°
ω and φ scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −20→20
Tmin = 0.967, Tmax = 0.974 l = −17→17
21144 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.5454P] where P = (Fo2 + 2Fc2)/3
4647 reflections (Δ/σ)max < 0.001
284 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H2 1.231 (2) −0.0946 (12) 0.5116 (14) 0.044 (5)*
C1 0.7913 (2) −0.08013 (11) 0.21842 (13) 0.0408 (4)
C2 0.78765 (18) 0.00744 (10) 0.23169 (12) 0.0331 (4)
C3 0.88408 (17) 0.05202 (10) 0.30178 (12) 0.0301 (4)
C4 0.71584 (17) 0.14707 (10) 0.22283 (12) 0.0318 (4)
H4 0.7178 0.1947 0.1787 0.038*
C5 0.68263 (18) 0.06474 (10) 0.15994 (12) 0.0314 (4)
H5 0.5848 0.0465 0.1531 0.038*
C6 0.7683 (3) 0.09390 (17) −0.23642 (17) 0.0734 (7)
H6A 0.8681 0.0883 −0.2296 0.110*
H6B 0.7350 0.1474 −0.2658 0.110*
H6C 0.7163 0.0501 −0.2791 0.110*
C31 1.01403 (17) 0.02910 (10) 0.37695 (12) 0.0310 (4)
C32 1.12543 (17) 0.08399 (11) 0.43391 (12) 0.0325 (4)
C33 1.14643 (19) 0.17039 (11) 0.44071 (14) 0.0405 (4)
H33 1.0781 0.2066 0.4014 0.049*
C34 1.2696 (2) 0.20113 (13) 0.50646 (16) 0.0535 (5)
H34 1.2841 0.2588 0.5116 0.064*
C35 1.3735 (2) 0.14808 (14) 0.56565 (17) 0.0615 (6)
H35 1.4558 0.1709 0.6097 0.074*
C36 1.3567 (2) 0.06253 (14) 0.56019 (15) 0.0527 (5)
H36 1.4263 0.0268 0.5991 0.063*
C37 1.23189 (18) 0.03164 (11) 0.49441 (13) 0.0367 (4)
C38 1.05756 (18) −0.05100 (11) 0.40606 (13) 0.0357 (4)
H38 1.0052 −0.0992 0.3819 0.043*
C41 0.60327 (18) 0.16108 (10) 0.27659 (13) 0.0337 (4)
C42 0.45710 (18) 0.18082 (11) 0.21168 (13) 0.0372 (4)
C43 0.4312 (2) 0.21107 (12) 0.11489 (14) 0.0463 (5)
H43 0.5073 0.2244 0.0906 0.056*
C44 0.2925 (2) 0.22178 (14) 0.05363 (17) 0.0619 (6)
H44 0.2753 0.2419 −0.0118 0.074*
C45 0.1806 (3) 0.20254 (16) 0.0902 (2) 0.0759 (8)
H45 0.0873 0.2089 0.0490 0.091*
C46 0.2051 (3) 0.17414 (18) 0.1867 (2) 0.0786 (8)
H46 0.1287 0.1622 0.2112 0.094*
C47 0.3427 (2) 0.16313 (14) 0.24769 (17) 0.0574 (6)
H47 0.3589 0.1437 0.3133 0.069*
C51 0.70509 (18) 0.07130 (10) 0.05677 (12) 0.0320 (4)
C52 0.59093 (19) 0.08565 (11) −0.02828 (13) 0.0380 (4)
H52 0.4993 0.0900 −0.0222 0.046*
C53 0.6116 (2) 0.09362 (12) −0.12209 (14) 0.0447 (5)
H53 0.5334 0.1032 −0.1782 0.054*
C54 0.7455 (2) 0.08765 (12) −0.13439 (15) 0.0465 (5)
C55 0.8592 (2) 0.07429 (13) −0.04929 (16) 0.0503 (5)
H55 0.9509 0.0707 −0.0555 0.060*
C56 0.8396 (2) 0.06610 (12) 0.04483 (14) 0.0426 (4)
H56 0.9181 0.0570 0.1009 0.051*
N1 0.7928 (2) −0.15113 (11) 0.20826 (15) 0.0670 (6)
N2 1.18746 (16) −0.04969 (10) 0.47495 (11) 0.0387 (4)
O1 0.85398 (12) 0.13585 (7) 0.29520 (9) 0.0369 (3)
O2 0.62895 (14) 0.14959 (8) 0.36623 (9) 0.0452 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0479 (11) 0.0332 (10) 0.0347 (10) 0.0026 (8) 0.0019 (8) −0.0008 (8)
C2 0.0382 (9) 0.0284 (8) 0.0297 (9) 0.0029 (7) 0.0054 (7) 0.0004 (7)
C3 0.0333 (9) 0.0274 (8) 0.0293 (9) 0.0050 (7) 0.0086 (7) 0.0024 (7)
C4 0.0329 (9) 0.0289 (9) 0.0287 (9) 0.0038 (6) 0.0014 (7) 0.0007 (7)
C5 0.0322 (9) 0.0284 (8) 0.0306 (9) 0.0002 (6) 0.0047 (7) −0.0014 (7)
C6 0.0889 (19) 0.0920 (19) 0.0465 (14) 0.0128 (14) 0.0310 (13) 0.0068 (12)
C31 0.0336 (9) 0.0323 (9) 0.0273 (9) 0.0033 (7) 0.0093 (7) 0.0010 (7)
C32 0.0326 (9) 0.0384 (9) 0.0272 (9) 0.0009 (7) 0.0099 (7) 0.0021 (7)
C33 0.0412 (10) 0.0380 (10) 0.0403 (11) −0.0008 (8) 0.0091 (8) 0.0031 (8)
C34 0.0522 (13) 0.0450 (12) 0.0566 (13) −0.0126 (9) 0.0057 (10) −0.0017 (10)
C35 0.0471 (13) 0.0626 (15) 0.0604 (15) −0.0160 (10) −0.0061 (11) 0.0037 (11)
C36 0.0389 (11) 0.0599 (13) 0.0495 (12) −0.0012 (9) −0.0021 (9) 0.0106 (10)
C37 0.0345 (10) 0.0417 (10) 0.0328 (9) 0.0018 (7) 0.0083 (8) 0.0054 (7)
C38 0.0385 (10) 0.0363 (9) 0.0306 (9) 0.0027 (7) 0.0075 (8) 0.0002 (7)
C41 0.0402 (10) 0.0257 (8) 0.0306 (9) 0.0035 (7) 0.0031 (7) −0.0009 (7)
C42 0.0365 (10) 0.0361 (9) 0.0343 (10) 0.0075 (7) 0.0030 (8) −0.0048 (7)
C43 0.0479 (11) 0.0472 (11) 0.0369 (11) 0.0155 (9) 0.0020 (9) −0.0002 (8)
C44 0.0636 (15) 0.0593 (14) 0.0459 (13) 0.0249 (11) −0.0098 (11) −0.0050 (10)
C45 0.0428 (13) 0.0837 (18) 0.081 (2) 0.0188 (12) −0.0127 (13) −0.0223 (15)
C46 0.0410 (13) 0.105 (2) 0.085 (2) 0.0046 (13) 0.0114 (13) −0.0088 (16)
C47 0.0429 (12) 0.0740 (15) 0.0535 (13) 0.0057 (10) 0.0115 (10) 0.0012 (11)
C51 0.0358 (9) 0.0263 (8) 0.0310 (9) 0.0028 (7) 0.0052 (7) −0.0013 (7)
C52 0.0342 (10) 0.0407 (10) 0.0360 (10) −0.0023 (7) 0.0054 (8) −0.0015 (8)
C53 0.0501 (12) 0.0482 (11) 0.0300 (10) −0.0001 (9) 0.0029 (9) 0.0024 (8)
C54 0.0597 (13) 0.0430 (11) 0.0390 (11) 0.0073 (9) 0.0180 (10) 0.0016 (8)
C55 0.0473 (12) 0.0582 (13) 0.0499 (12) 0.0167 (9) 0.0210 (10) 0.0063 (10)
C56 0.0373 (10) 0.0482 (11) 0.0391 (11) 0.0107 (8) 0.0062 (8) 0.0030 (8)
N1 0.0830 (14) 0.0337 (10) 0.0688 (13) 0.0048 (9) −0.0014 (11) −0.0071 (8)
N2 0.0395 (8) 0.0369 (8) 0.0357 (8) 0.0085 (7) 0.0051 (7) 0.0084 (7)
O1 0.0331 (6) 0.0279 (6) 0.0415 (7) 0.0036 (5) −0.0016 (5) −0.0029 (5)
O2 0.0515 (8) 0.0508 (8) 0.0290 (7) 0.0095 (6) 0.0051 (6) 0.0042 (6)

Geometric parameters (Å, º)

C1—N1 1.142 (2) C37—N2 1.370 (2)
C1—C2 1.411 (2) C38—N2 1.348 (2)
C2—C3 1.343 (2) C38—H38 0.9300
C2—C5 1.511 (2) C41—O2 1.208 (2)
C3—O1 1.3670 (18) C41—C42 1.484 (2)
C3—C31 1.436 (2) C42—C43 1.379 (3)
C4—O1 1.4397 (19) C42—C47 1.386 (3)
C4—C41 1.521 (2) C43—C44 1.385 (3)
C4—C5 1.557 (2) C43—H43 0.9300
C4—H4 0.9800 C44—C45 1.374 (3)
C5—C51 1.515 (2) C44—H44 0.9300
C5—H5 0.9800 C45—C46 1.366 (4)
C6—C54 1.501 (3) C45—H45 0.9300
C6—H6A 0.9600 C46—C47 1.376 (3)
C6—H6B 0.9600 C46—H46 0.9300
C6—H6C 0.9600 C47—H47 0.9300
C31—C38 1.370 (2) C51—C56 1.380 (2)
C31—C32 1.441 (2) C51—C52 1.385 (2)
C32—C33 1.393 (2) C52—C53 1.381 (3)
C32—C37 1.405 (2) C52—H52 0.9300
C33—C34 1.372 (3) C53—C54 1.377 (3)
C33—H33 0.9300 C53—H53 0.9300
C34—C35 1.391 (3) C54—C55 1.381 (3)
C34—H34 0.9300 C55—C56 1.381 (3)
C35—C36 1.374 (3) C55—H55 0.9300
C35—H35 0.9300 C56—H56 0.9300
C36—C37 1.383 (3) N2—H2 0.91 (2)
C36—H36 0.9300
N1—C1—C2 179.0 (2) N2—C38—C31 109.98 (15)
C3—C2—C1 125.41 (15) N2—C38—H38 125.0
C3—C2—C5 110.74 (14) C31—C38—H38 125.0
C1—C2—C5 123.49 (15) O2—C41—C42 121.82 (17)
C2—C3—O1 112.21 (14) O2—C41—C4 121.48 (15)
C2—C3—C31 132.51 (15) C42—C41—C4 116.40 (14)
O1—C3—C31 115.18 (14) C43—C42—C47 119.15 (18)
O1—C4—C41 110.25 (13) C43—C42—C41 122.17 (17)
O1—C4—C5 106.50 (12) C47—C42—C41 118.55 (17)
C41—C4—C5 109.70 (13) C42—C43—C44 120.4 (2)
O1—C4—H4 110.1 C42—C43—H43 119.8
C41—C4—H4 110.1 C44—C43—H43 119.8
C5—C4—H4 110.1 C45—C44—C43 119.5 (2)
C2—C5—C51 113.80 (13) C45—C44—H44 120.2
C2—C5—C4 98.75 (12) C43—C44—H44 120.2
C51—C5—C4 113.99 (13) C46—C45—C44 120.5 (2)
C2—C5—H5 109.9 C46—C45—H45 119.7
C51—C5—H5 109.9 C44—C45—H45 119.7
C4—C5—H5 109.9 C45—C46—C47 120.2 (2)
C54—C6—H6A 109.5 C45—C46—H46 119.9
C54—C6—H6B 109.5 C47—C46—H46 119.9
H6A—C6—H6B 109.5 C46—C47—C42 120.2 (2)
C54—C6—H6C 109.5 C46—C47—H47 119.9
H6A—C6—H6C 109.5 C42—C47—H47 119.9
H6B—C6—H6C 109.5 C56—C51—C52 117.94 (16)
C38—C31—C3 125.75 (15) C56—C51—C5 121.36 (15)
C38—C31—C32 106.58 (15) C52—C51—C5 120.67 (15)
C3—C31—C32 127.64 (15) C53—C52—C51 120.77 (17)
C33—C32—C37 118.61 (16) C53—C52—H52 119.6
C33—C32—C31 135.37 (16) C51—C52—H52 119.6
C37—C32—C31 106.01 (15) C54—C53—C52 121.43 (18)
C34—C33—C32 118.84 (17) C54—C53—H53 119.3
C34—C33—H33 120.6 C52—C53—H53 119.3
C32—C33—H33 120.6 C53—C54—C55 117.63 (18)
C33—C34—C35 121.53 (19) C53—C54—C6 121.72 (19)
C33—C34—H34 119.2 C55—C54—C6 120.64 (19)
C35—C34—H34 119.2 C54—C55—C56 121.37 (19)
C36—C35—C34 121.10 (19) C54—C55—H55 119.3
C36—C35—H35 119.4 C56—C55—H55 119.3
C34—C35—H35 119.4 C51—C56—C55 120.85 (17)
C35—C36—C37 117.31 (18) C51—C56—H56 119.6
C35—C36—H36 121.3 C55—C56—H56 119.6
C37—C36—H36 121.3 C38—N2—C37 109.46 (14)
N2—C37—C36 129.44 (17) C38—N2—H2 125.2 (12)
N2—C37—C32 107.95 (15) C37—N2—H2 124.4 (12)
C36—C37—C32 122.60 (17) C3—O1—C4 107.96 (12)
N1—C1—C2—C3 106 (14) C5—C4—C41—O2 105.78 (18)
N1—C1—C2—C5 −82 (14) O1—C4—C41—C42 175.00 (13)
C1—C2—C3—O1 178.88 (16) C5—C4—C41—C42 −68.02 (17)
C5—C2—C3—O1 5.6 (2) O2—C41—C42—C43 166.10 (17)
C1—C2—C3—C31 2.8 (3) C4—C41—C42—C43 −20.1 (2)
C5—C2—C3—C31 −170.48 (17) O2—C41—C42—C47 −18.1 (3)
C3—C2—C5—C51 106.09 (16) C4—C41—C42—C47 155.73 (17)
C1—C2—C5—C51 −67.3 (2) C47—C42—C43—C44 −1.5 (3)
C3—C2—C5—C4 −15.07 (18) C41—C42—C43—C44 174.33 (17)
C1—C2—C5—C4 171.50 (16) C42—C43—C44—C45 0.4 (3)
O1—C4—C5—C2 18.97 (16) C43—C44—C45—C46 0.9 (4)
C41—C4—C5—C2 −100.33 (14) C44—C45—C46—C47 −1.1 (4)
O1—C4—C5—C51 −102.04 (15) C45—C46—C47—C42 0.0 (4)
C41—C4—C5—C51 138.65 (14) C43—C42—C47—C46 1.3 (3)
C2—C3—C31—C38 −12.6 (3) C41—C42—C47—C46 −174.7 (2)
O1—C3—C31—C38 171.41 (15) C2—C5—C51—C56 −32.8 (2)
C2—C3—C31—C32 165.29 (18) C4—C5—C51—C56 79.46 (19)
O1—C3—C31—C32 −10.7 (2) C2—C5—C51—C52 149.49 (15)
C38—C31—C32—C33 −179.13 (19) C4—C5—C51—C52 −98.29 (18)
C3—C31—C32—C33 2.7 (3) C56—C51—C52—C53 0.6 (3)
C38—C31—C32—C37 0.53 (18) C5—C51—C52—C53 178.47 (16)
C3—C31—C32—C37 −177.68 (16) C51—C52—C53—C54 0.0 (3)
C37—C32—C33—C34 −0.3 (3) C52—C53—C54—C55 −0.7 (3)
C31—C32—C33—C34 179.29 (19) C52—C53—C54—C6 178.30 (19)
C32—C33—C34—C35 0.3 (3) C53—C54—C55—C56 0.8 (3)
C33—C34—C35—C36 0.2 (4) C6—C54—C55—C56 −178.2 (2)
C34—C35—C36—C37 −0.7 (3) C52—C51—C56—C55 −0.5 (3)
C35—C36—C37—N2 −179.33 (19) C5—C51—C56—C55 −178.35 (16)
C35—C36—C37—C32 0.6 (3) C54—C55—C56—C51 −0.2 (3)
C33—C32—C37—N2 179.83 (15) C31—C38—N2—C37 1.1 (2)
C31—C32—C37—N2 0.10 (19) C36—C37—N2—C38 179.26 (19)
C33—C32—C37—C36 −0.1 (3) C32—C37—N2—C38 −0.7 (2)
C31—C32—C37—C36 −179.88 (17) C2—C3—O1—C4 7.86 (18)
C3—C31—C38—N2 177.26 (15) C31—C3—O1—C4 −175.33 (14)
C32—C31—C38—N2 −0.99 (19) C41—C4—O1—C3 101.52 (14)
O1—C4—C41—O2 −11.2 (2) C5—C4—O1—C3 −17.43 (17)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C51–C56 ring.

D—H···A D—H H···A D···A D—H···A
C33—H33···O1 0.93 2.52 3.032 (2) 115
N2—H2···O2i 0.91 (2) 2.04 (2) 2.880 (2) 154
C44—H44···O2ii 0.93 2.55 3.329 (3) 142
C34—H34···Cg1iii 0.93 2.69 3.556 (3) 156

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5068).

References

  1. Auvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011105/tk5068sup1.cif

e-68-o1124-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011105/tk5068Isup2.hkl

e-68-o1124-Isup2.hkl (227.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011105/tk5068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES