Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1128. doi: 10.1107/S160053681201118X

(4R*,5R*)-Diethyl 2-(4-nitro­phen­yl)-1,3-dioxolane-4,5-dicarboxyl­ate

Chun-Lei Lv a,b, Jian-Hui Chen a,b, Yu-Zhe Zhang c, Ding-Qiang Lu a,*, Ping-Kai OuYang a
PMCID: PMC3344074  PMID: 22589983

Abstract

In the title compound, C15H17NO8, the nitro group is essentially coplanar with the aromatic ring [dihedral angle = 6.4 (3) Å]. The five-membered ring has a twist conformation. In the crystal, C—H⋯O inter­actions link the mol­ecules into a helical chain propagating along [010].

Related literature  

For the synthesis of the title compound, see: Kim et al. (1994). For the use of (2S,3S)-diethyl 2,3-O-alkyl­tartrate analogues as inter­mediates in organic synthesis, see: Pandey et al. (1997). For typical bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1128-scheme1.jpg

Experimental  

Crystal data  

  • C15H17NO8

  • M r = 339.30

  • Monoclinic, Inline graphic

  • a = 12.261 (3) Å

  • b = 4.5200 (9) Å

  • c = 15.656 (3) Å

  • β = 112.27 (3)°

  • V = 802.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.966, T max = 0.989

  • 3062 measured reflections

  • 1660 independent reflections

  • 1364 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.142

  • S = 1.01

  • 1660 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201118X/su2384sup1.cif

e-68-o1128-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201118X/su2384Isup2.hkl

e-68-o1128-Isup2.hkl (81.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201118X/su2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O8i 0.96 2.50 3.356 (7) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for their support.

supplementary crystallographic information

Comment

Antitumor platinum drugs are one of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the synthesis of platinum complexes with antitumor activity (Kim et al., 1994), and they are also important intermediates in organic synthesis (Pandey et al., 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al., 1987). The nitro group (N1/O1/O2) is essentially coplanar with the aromatic ring (C1-C6) being inclined to it by 6.4 (3)°. The five-membered ring (O3/O4/C7-C9) has a twist conformation on bond O4-C8.

In the crystal, a C—H···O interaction (Table 1) links the molecules to form a a helical chain propagating along the b axis direction (Fig. 2).

Experimental

4-Nitrobenzaldehyde (299 mg, 1.98 mmol), (2S,3S)-diethyltartrate (378 mg, 1.84 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 30 mg of 4-methylbenzenesulfonic acid was added. The flask was fitted with a water distributor. The mixture was heated under reflux for 4 h. The reaction mixture was then added dropwise to water (600 ml) with vigorous stirring. A pale yellow precipitate was obtained, filtered off and dried in vacuo. Colourless block-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a methanol solution after 4 weeks.

Refinement

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH3, CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(N,C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1257 Friedel pairs were merged and Δf " set to zero.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound, with the C-H···O interactions shown as dashed lines.

Crystal data

C15H17NO8 F(000) = 356
Mr = 339.30 Dx = 1.403 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 12.261 (3) Å θ = 9–13°
b = 4.5200 (9) Å µ = 0.12 mm1
c = 15.656 (3) Å T = 293 K
β = 112.27 (3)° Block, colourless
V = 802.9 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf-Nonius CAD-4 diffractometer 1364 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
Graphite monochromator θmax = 25.3°, θmin = 1.4°
ω/2θ scans h = 0→14
Absorption correction: ψ scan (North et al., 1968) k = −5→5
Tmin = 0.966, Tmax = 0.989 l = −18→17
3062 measured reflections 3 standard reflections every 200 reflections
1660 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.1P)2 + 0.070P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1660 reflections Δρmax = 0.21 e Å3
218 parameters Δρmin = −0.16 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.036 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1597 (5) 0.1051 (17) 0.6035 (3) 0.1016 (18)
C1 0.3496 (4) −0.1471 (14) 0.4814 (3) 0.0770 (14)
H1A 0.4154 −0.2670 0.4932 0.092*
O1 0.0820 (6) 0.276 (2) 0.5904 (4) 0.163 (3)
C2 0.3039 (4) −0.1052 (17) 0.5489 (3) 0.0902 (18)
H2A 0.3396 −0.1929 0.6066 0.108*
O2 0.2028 (4) −0.0395 (18) 0.6735 (3) 0.146 (3)
O3 0.26487 (19) −0.1203 (6) 0.23682 (14) 0.0483 (6)
C3 0.2075 (4) 0.0631 (14) 0.5303 (3) 0.0703 (12)
O4 0.40116 (19) 0.2240 (6) 0.31395 (14) 0.0465 (6)
C4 0.1556 (4) 0.2006 (17) 0.4495 (3) 0.0924 (19)
H4A 0.0895 0.3184 0.4387 0.111*
O5 0.5315 (2) 0.1545 (8) 0.14859 (18) 0.0685 (8)
C5 0.2020 (4) 0.1647 (15) 0.3817 (3) 0.0855 (17)
H5A 0.1675 0.2616 0.3254 0.103*
C6 0.2981 (3) −0.0121 (9) 0.3972 (2) 0.0490 (9)
O6 0.5589 (3) −0.1270 (9) 0.2711 (2) 0.0884 (11)
C7 0.3507 (3) −0.0501 (8) 0.3259 (2) 0.0469 (8)
H7A 0.4116 −0.2038 0.3455 0.056*
C8 0.4003 (3) 0.2225 (8) 0.2239 (2) 0.0445 (8)
H8A 0.3970 0.4254 0.2010 0.053*
O7 0.1014 (2) 0.2755 (6) 0.15578 (16) 0.0555 (7)
C9 0.2829 (3) 0.0569 (8) 0.1691 (2) 0.0452 (8)
H9A 0.2942 −0.0709 0.1226 0.054*
O8 0.1850 (2) 0.4257 (7) 0.05872 (16) 0.0650 (8)
C10 0.5053 (3) 0.0613 (9) 0.2180 (3) 0.0525 (9)
C11 0.6333 (4) 0.0176 (15) 0.1381 (3) 0.0895 (16)
H11A 0.6229 −0.1952 0.1325 0.107*
H11B 0.7040 0.0595 0.1917 0.107*
C12 0.6445 (5) 0.1387 (18) 0.0547 (4) 0.107 (2)
H12A 0.7100 0.0469 0.0457 0.161*
H12B 0.6573 0.3484 0.0616 0.161*
H12C 0.5735 0.1000 0.0022 0.161*
C13 0.1838 (3) 0.2735 (8) 0.1218 (2) 0.0449 (8)
C14 0.0027 (4) 0.4800 (12) 0.1144 (3) 0.0712 (12)
H14A 0.0301 0.6610 0.0960 0.085*
H14B −0.0562 0.3910 0.0601 0.085*
C15 −0.0484 (5) 0.5452 (19) 0.1824 (4) 0.117 (2)
H15A −0.1132 0.6799 0.1563 0.175*
H15B 0.0103 0.6335 0.2359 0.175*
H15C −0.0761 0.3653 0.1998 0.175*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.105 (3) 0.139 (5) 0.084 (3) −0.026 (4) 0.062 (3) −0.016 (3)
C1 0.071 (2) 0.095 (4) 0.068 (2) 0.019 (3) 0.030 (2) 0.030 (3)
O1 0.183 (5) 0.223 (8) 0.135 (4) 0.052 (7) 0.119 (4) 0.004 (5)
C2 0.093 (3) 0.125 (5) 0.056 (2) 0.000 (4) 0.032 (2) 0.028 (3)
O2 0.176 (4) 0.200 (7) 0.094 (2) −0.031 (5) 0.089 (3) 0.015 (4)
O3 0.0611 (13) 0.0358 (12) 0.0482 (12) −0.0079 (12) 0.0209 (10) −0.0006 (10)
C3 0.073 (2) 0.091 (3) 0.056 (2) −0.022 (3) 0.0355 (19) −0.011 (2)
O4 0.0525 (12) 0.0379 (13) 0.0504 (12) −0.0032 (11) 0.0208 (9) −0.0071 (11)
C4 0.088 (3) 0.130 (5) 0.072 (3) 0.036 (4) 0.045 (2) 0.007 (4)
O5 0.0702 (16) 0.073 (2) 0.0773 (16) 0.0163 (16) 0.0448 (13) 0.0028 (16)
C5 0.090 (3) 0.112 (5) 0.060 (2) 0.045 (3) 0.036 (2) 0.021 (3)
C6 0.0488 (17) 0.048 (2) 0.0468 (17) −0.0029 (17) 0.0141 (14) 0.0011 (16)
O6 0.090 (2) 0.078 (2) 0.117 (2) 0.034 (2) 0.0619 (19) 0.033 (2)
C7 0.0506 (17) 0.0374 (18) 0.0508 (17) 0.0003 (16) 0.0169 (14) 0.0011 (15)
C8 0.0494 (17) 0.0367 (17) 0.0495 (16) −0.0036 (16) 0.0212 (14) −0.0032 (16)
O7 0.0547 (13) 0.0584 (17) 0.0582 (13) 0.0070 (13) 0.0267 (11) 0.0119 (13)
C9 0.0597 (19) 0.0338 (17) 0.0486 (16) −0.0033 (16) 0.0279 (15) −0.0046 (15)
O8 0.0735 (16) 0.071 (2) 0.0550 (13) 0.0023 (16) 0.0290 (12) 0.0172 (15)
C10 0.058 (2) 0.043 (2) 0.062 (2) −0.0007 (19) 0.0291 (17) −0.0052 (19)
C11 0.090 (3) 0.095 (4) 0.109 (3) 0.022 (3) 0.066 (3) −0.007 (3)
C12 0.112 (4) 0.124 (6) 0.118 (4) 0.014 (4) 0.081 (3) −0.009 (4)
C13 0.0490 (17) 0.0425 (19) 0.0401 (15) −0.0088 (15) 0.0135 (14) −0.0045 (15)
C14 0.061 (2) 0.073 (3) 0.078 (3) 0.017 (2) 0.0242 (19) 0.014 (2)
C15 0.100 (4) 0.136 (7) 0.133 (4) 0.057 (5) 0.065 (3) 0.027 (5)

Geometric parameters (Å, º)

N1—O1 1.183 (9) C7—H7A 0.9800
N1—O2 1.212 (8) C8—C10 1.512 (5)
N1—C3 1.483 (6) C8—C9 1.560 (4)
C1—C6 1.370 (5) C8—H8A 0.9800
C1—C2 1.384 (6) O7—C13 1.309 (4)
C1—H1A 0.9300 O7—C14 1.465 (5)
C2—C3 1.341 (8) C9—C13 1.517 (5)
C2—H2A 0.9300 C9—H9A 0.9800
O3—C9 1.411 (4) O8—C13 1.208 (4)
O3—C7 1.428 (4) C11—C12 1.470 (7)
C3—C4 1.335 (7) C11—H11A 0.9700
O4—C8 1.406 (4) C11—H11B 0.9700
O4—C7 1.428 (4) C12—H12A 0.9600
C4—C5 1.391 (6) C12—H12B 0.9600
C4—H4A 0.9300 C12—H12C 0.9600
O5—C10 1.314 (5) C14—C15 1.455 (7)
O5—C11 1.458 (5) C14—H14A 0.9700
C5—C6 1.367 (6) C14—H14B 0.9700
C5—H5A 0.9300 C15—H15A 0.9600
C6—C7 1.497 (5) C15—H15B 0.9600
O6—C10 1.197 (5) C15—H15C 0.9600
O1—N1—O2 123.7 (5) O3—C9—C13 114.1 (3)
O1—N1—C3 118.6 (6) O3—C9—C8 103.5 (2)
O2—N1—C3 117.7 (6) C13—C9—C8 111.1 (3)
C6—C1—C2 120.0 (5) O3—C9—H9A 109.3
C6—C1—H1A 120.0 C13—C9—H9A 109.3
C2—C1—H1A 120.0 C8—C9—H9A 109.3
C3—C2—C1 119.4 (4) O6—C10—O5 124.1 (4)
C3—C2—H2A 120.3 O6—C10—C8 123.8 (3)
C1—C2—H2A 120.3 O5—C10—C8 112.1 (3)
C9—O3—C7 109.9 (3) O5—C11—C12 108.3 (4)
C4—C3—C2 122.3 (4) O5—C11—H11A 110.0
C4—C3—N1 119.1 (5) C12—C11—H11A 110.0
C2—C3—N1 118.6 (5) O5—C11—H11B 110.0
C8—O4—C7 106.7 (3) C12—C11—H11B 110.0
C3—C4—C5 118.9 (5) H11A—C11—H11B 108.4
C3—C4—H4A 120.6 C11—C12—H12A 109.5
C5—C4—H4A 120.6 C11—C12—H12B 109.5
C10—O5—C11 116.5 (4) H12A—C12—H12B 109.5
C6—C5—C4 120.4 (4) C11—C12—H12C 109.5
C6—C5—H5A 119.8 H12A—C12—H12C 109.5
C4—C5—H5A 119.8 H12B—C12—H12C 109.5
C5—C6—C1 118.9 (4) O8—C13—O7 125.3 (3)
C5—C6—C7 121.4 (3) O8—C13—C9 120.8 (3)
C1—C6—C7 119.7 (3) O7—C13—C9 113.9 (3)
O4—C7—O3 105.1 (3) C15—C14—O7 108.5 (4)
O4—C7—C6 109.2 (3) C15—C14—H14A 110.0
O3—C7—C6 112.8 (3) O7—C14—H14A 110.0
O4—C7—H7A 109.9 C15—C14—H14B 110.0
O3—C7—H7A 109.9 O7—C14—H14B 110.0
C6—C7—H7A 109.9 H14A—C14—H14B 108.4
O4—C8—C10 112.4 (3) C14—C15—H15A 109.5
O4—C8—C9 102.0 (2) C14—C15—H15B 109.5
C10—C8—C9 111.4 (3) H15A—C15—H15B 109.5
O4—C8—H8A 110.3 C14—C15—H15C 109.5
C10—C8—H8A 110.3 H15A—C15—H15C 109.5
C9—C8—H8A 110.3 H15B—C15—H15C 109.5
C13—O7—C14 117.5 (3)
C6—C1—C2—C3 1.4 (9) C7—O4—C8—C10 −83.6 (3)
C1—C2—C3—C4 −2.1 (10) C7—O4—C8—C9 35.8 (3)
C1—C2—C3—N1 179.9 (6) C7—O3—C9—C13 −114.2 (3)
O1—N1—C3—C4 −5.3 (10) C7—O3—C9—C8 6.7 (3)
O2—N1—C3—C4 174.5 (6) O4—C8—C9—O3 −25.9 (3)
O1—N1—C3—C2 172.7 (7) C10—C8—C9—O3 94.2 (3)
O2—N1—C3—C2 −7.5 (9) O4—C8—C9—C13 97.1 (3)
C2—C3—C4—C5 0.9 (10) C10—C8—C9—C13 −142.9 (3)
N1—C3—C4—C5 178.9 (6) C11—O5—C10—O6 −0.6 (6)
C3—C4—C5—C6 1.0 (10) C11—O5—C10—C8 178.6 (4)
C4—C5—C6—C1 −1.6 (9) O4—C8—C10—O6 24.7 (5)
C4—C5—C6—C7 −179.0 (5) C9—C8—C10—O6 −89.0 (4)
C2—C1—C6—C5 0.5 (8) O4—C8—C10—O5 −154.5 (3)
C2—C1—C6—C7 177.8 (5) C9—C8—C10—O5 91.7 (4)
C8—O4—C7—O3 −32.8 (3) C10—O5—C11—C12 177.1 (5)
C8—O4—C7—C6 −154.0 (2) C14—O7—C13—O8 −0.4 (5)
C9—O3—C7—O4 14.8 (3) C14—O7—C13—C9 179.6 (3)
C9—O3—C7—C6 133.7 (3) O3—C9—C13—O8 −175.6 (3)
C5—C6—C7—O4 67.0 (5) C8—C9—C13—O8 67.8 (4)
C1—C6—C7—O4 −110.3 (4) O3—C9—C13—O7 4.4 (4)
C5—C6—C7—O3 −49.4 (5) C8—C9—C13—O7 −112.2 (3)
C1—C6—C7—O3 133.3 (4) C13—O7—C14—C15 −155.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O8i 0.96 2.50 3.356 (7) 149

Symmetry code: (i) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2384).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B. & Park, J. G. (1994). J. Med. Chem. 37, 147–1485. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201118X/su2384sup1.cif

e-68-o1128-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201118X/su2384Isup2.hkl

e-68-o1128-Isup2.hkl (81.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201118X/su2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES