Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1131. doi: 10.1107/S1600536812011233

5,6-Dimethyl-4-phenyl-2H-pyran-2-one

Hai-Yun Xu a,*, Sheng-Hai Guo a, Kun Li a, Xue-Sen Fan a
PMCID: PMC3344077  PMID: 22589986

Abstract

In the title compound, C13H12O2, the dihedral angle between the pyran­one and phenyl rings is 57.55 (9)°. In the crystal, the mol­ecules are linked by π–π stacking inter­actions between the parallel pyran­one rings of neighboring mol­ecules with distances of 3.5778 (11) Å and 3.3871 (11) Å between the planes. C—H⋯O interactions also occur.

Related literature  

For the bioactivity of 2H-pyran-2-ones, see: Puerta et al. (2005); Thaisrivongs et al. (1998); Appendino et al. (2007). For research on functionalized allenes, see: Fan et al. (2011); Zhang et al. (2011); Xu et al. (2012).graphic file with name e-68-o1131-scheme1.jpg

Experimental  

Crystal data  

  • C13H12O2

  • M r = 200.23

  • Monoclinic, Inline graphic

  • a = 7.654 (3) Å

  • b = 6.967 (3) Å

  • c = 20.629 (8) Å

  • β = 97.183 (4)°

  • V = 1091.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.39 × 0.37 × 0.28 mm

Data collection  

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.969, T max = 0.978

  • 7794 measured reflections

  • 2032 independent reflections

  • 1530 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.137

  • S = 1.04

  • 2032 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812011233/vm2163sup1.cif

e-68-o1131-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011233/vm2163Isup2.hkl

e-68-o1131-Isup2.hkl (100KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011233/vm2163Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812011233/vm2163Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.53 3.384 (2) 152
C13—H13A⋯O2ii 0.96 2.47 3.372 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21172057).

supplementary crystallographic information

Comment

2H-Pyran-2-one derivatives are highly desirable synthetic targets since they are known to have antimicrobial, antineoplastic, and anti-HIV effects (Puerta et al., 2005; Thaisrivongs et al., 1998; Appendino et al., 2007). During our search for new synthetic methodologies by taking the advantages of the versatile reactivity of functionalized allenes (Fan et al., 2011; Zhang et al., 2011), we developed a novel protocol for the preparation of 2H-pyran-2-ones through an acid-catalyzed domino reaction of 3-hydroxyhexa-4,5-dienoates (Xu et al., 2012). Herein, we would like to report the structure of one of the products we obtained.

In the title compound (Fig. 1), all the bond lengths and bond angles are within normal ranges. All the atoms connected with the pyranone ring are in the pyranone plane with a maximal deviation of 0.052 (2) Å for substituent C12. The dihedral angle between the pyranone ring and the phenyl ring is 57.55 (9)°.

In the crystal structure, the molecules are connected via intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2). The neighboring O1B-pyranone ring, O1D-pyranone ring, O1A-pyranone ring and O1C-pyranone ring [symmetry code: (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z; (D) 1 - x, 1 - y, 1 - z] are parallel with the distance between the O1D ring and O1A ring being 3.5778 (11) Å and the distance between the O1A ring and O1C ring being 3.3871 (11) Å. The short face-to-face separation clearly indicates the existence of π-π stacking between the pyranone rings.

Experimental

To a flask containing methyl 3-hydroxy-4-methyl-3-phenylhexa-4,5-dienoate (1 mmol) were added CH2Cl2 (5 ml) and conc. H2SO4 (0.1 mmol). The solution was stirred at room temperature until completion as monitored by TLC. The reaction was quenched with aqueous NaHCO3, and then extracted with ethyl acetate (5 ml × 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with petroleum ether-ethyl acetate (10:1 v/v) to give the title compound as colorless solids with a yield of 90%. Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solvent from a petroleum ether-dichloromethane (3:1 v/v) solution.

Refinement

The H atoms were included at calculated positions and were refined as riding atoms: C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, with Uiso(H) =x×Ueq (C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines, only H atoms involved in hydrogen bonds are shown. π-π stacking interactions between the parallel pyranone rings of neighboring molecules are observed.

Crystal data

C13H12O2 F(000) = 424
Mr = 200.23 Dx = 1.219 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2249 reflections
a = 7.654 (3) Å θ = 2.7–25.9°
b = 6.967 (3) Å µ = 0.08 mm1
c = 20.629 (8) Å T = 296 K
β = 97.183 (4)° Block, colourless
V = 1091.4 (7) Å3 0.39 × 0.37 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD area detector diffractometer 2032 independent reflections
Radiation source: fine-focus sealed tube 1530 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
phi and ω scans θmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.969, Tmax = 0.978 k = −8→8
7794 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.2202P] where P = (Fo2 + 2Fc2)/3
2032 reflections (Δ/σ)max = 0.001
138 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2300 (2) 0.4016 (3) 0.64903 (8) 0.0547 (4)
C2 0.1478 (3) 0.5353 (3) 0.68457 (9) 0.0749 (6)
H2 0.0883 0.6385 0.6634 0.090*
C3 0.1541 (3) 0.5154 (4) 0.75160 (10) 0.0907 (8)
H3 0.0979 0.6049 0.7753 0.109*
C4 0.2425 (3) 0.3647 (4) 0.78333 (10) 0.0894 (7)
H4 0.2464 0.3523 0.8284 0.107*
C5 0.3249 (3) 0.2329 (4) 0.74867 (10) 0.0831 (7)
H5 0.3861 0.1315 0.7703 0.100*
C6 0.3180 (3) 0.2493 (3) 0.68175 (9) 0.0651 (5)
H6 0.3727 0.1575 0.6585 0.078*
C7 0.1397 (2) 0.2616 (2) 0.47092 (8) 0.0506 (4)
C8 0.1532 (2) 0.2625 (2) 0.54020 (8) 0.0508 (4)
H8 0.1145 0.1558 0.5615 0.061*
C9 0.22072 (19) 0.4138 (2) 0.57639 (7) 0.0483 (4)
C10 0.2838 (2) 0.5790 (2) 0.54428 (8) 0.0520 (4)
C11 0.2706 (2) 0.5760 (2) 0.47847 (9) 0.0553 (4)
C12 0.3667 (3) 0.7471 (3) 0.58167 (11) 0.0771 (6)
H12A 0.4441 0.8121 0.5558 0.116*
H12B 0.4326 0.7029 0.6215 0.116*
H12C 0.2764 0.8339 0.5917 0.116*
C13 0.3217 (3) 0.7292 (3) 0.43413 (11) 0.0775 (6)
H13A 0.2281 0.8212 0.4264 0.116*
H13B 0.3434 0.6731 0.3934 0.116*
H13C 0.4265 0.7920 0.4540 0.116*
O1 0.20108 (14) 0.42248 (16) 0.44270 (5) 0.0546 (3)
O2 0.08210 (18) 0.13534 (19) 0.43387 (6) 0.0699 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0496 (9) 0.0703 (11) 0.0427 (9) 0.0008 (8) 0.0004 (7) −0.0027 (8)
C2 0.0710 (12) 0.0994 (15) 0.0514 (10) 0.0218 (11) −0.0034 (9) −0.0120 (10)
C3 0.0787 (14) 0.141 (2) 0.0513 (11) 0.0202 (14) 0.0051 (10) −0.0242 (13)
C4 0.0815 (14) 0.143 (2) 0.0420 (10) −0.0013 (15) 0.0022 (10) 0.0023 (13)
C5 0.0916 (15) 0.1017 (17) 0.0535 (12) 0.0055 (13) −0.0009 (11) 0.0162 (11)
C6 0.0736 (12) 0.0735 (12) 0.0476 (10) 0.0039 (9) 0.0052 (8) 0.0042 (9)
C7 0.0523 (9) 0.0550 (10) 0.0451 (9) 0.0090 (7) 0.0079 (7) 0.0006 (8)
C8 0.0529 (9) 0.0560 (10) 0.0439 (9) 0.0036 (7) 0.0078 (7) 0.0037 (7)
C9 0.0434 (8) 0.0565 (9) 0.0443 (9) 0.0069 (7) 0.0020 (6) 0.0004 (7)
C10 0.0449 (9) 0.0502 (9) 0.0600 (10) 0.0062 (7) 0.0025 (7) 0.0014 (8)
C11 0.0469 (9) 0.0566 (10) 0.0640 (11) 0.0104 (8) 0.0129 (8) 0.0110 (8)
C12 0.0726 (13) 0.0640 (12) 0.0910 (15) −0.0060 (10) −0.0045 (11) −0.0075 (10)
C13 0.0767 (13) 0.0691 (12) 0.0903 (15) 0.0091 (10) 0.0243 (11) 0.0282 (11)
O1 0.0615 (7) 0.0583 (7) 0.0452 (6) 0.0088 (6) 0.0109 (5) 0.0054 (5)
O2 0.0899 (10) 0.0664 (8) 0.0532 (7) −0.0013 (7) 0.0083 (7) −0.0133 (6)

Geometric parameters (Å, º)

C1—C2 1.384 (3) C7—C8 1.420 (2)
C1—C6 1.387 (2) C8—C9 1.356 (2)
C1—C9 1.494 (2) C8—H8 0.9300
C2—C3 1.384 (3) C9—C10 1.440 (2)
C2—H2 0.9300 C10—C11 1.349 (2)
C3—C4 1.370 (3) C10—C12 1.499 (2)
C3—H3 0.9300 C11—O1 1.369 (2)
C4—C5 1.366 (3) C11—C13 1.489 (2)
C4—H4 0.9300 C12—H12A 0.9600
C5—C6 1.380 (3) C12—H12B 0.9600
C5—H5 0.9300 C12—H12C 0.9600
C6—H6 0.9300 C13—H13A 0.9600
C7—O2 1.212 (2) C13—H13B 0.9600
C7—O1 1.373 (2) C13—H13C 0.9600
C2—C1—C6 118.86 (16) C7—C8—H8 118.9
C2—C1—C9 121.69 (16) C8—C9—C10 119.63 (15)
C6—C1—C9 119.41 (15) C8—C9—C1 118.35 (15)
C1—C2—C3 120.0 (2) C10—C9—C1 122.01 (15)
C1—C2—H2 120.0 C11—C10—C9 117.62 (15)
C3—C2—H2 120.0 C11—C10—C12 120.21 (17)
C4—C3—C2 120.5 (2) C9—C10—C12 122.14 (16)
C4—C3—H3 119.7 C10—C11—O1 121.97 (15)
C2—C3—H3 119.7 C10—C11—C13 127.95 (18)
C5—C4—C3 119.86 (19) O1—C11—C13 110.07 (16)
C5—C4—H4 120.1 C10—C12—H12A 109.5
C3—C4—H4 120.1 C10—C12—H12B 109.5
C4—C5—C6 120.4 (2) H12A—C12—H12B 109.5
C4—C5—H5 119.8 C10—C12—H12C 109.5
C6—C5—H5 119.8 H12A—C12—H12C 109.5
C5—C6—C1 120.39 (19) H12B—C12—H12C 109.5
C5—C6—H6 119.8 C11—C13—H13A 109.5
C1—C6—H6 119.8 C11—C13—H13B 109.5
O2—C7—O1 116.24 (15) H13A—C13—H13B 109.5
O2—C7—C8 127.79 (16) C11—C13—H13C 109.5
O1—C7—C8 115.97 (14) H13A—C13—H13C 109.5
C9—C8—C7 122.13 (15) H13B—C13—H13C 109.5
C9—C8—H8 118.9 C11—O1—C7 122.68 (13)
C6—C1—C2—C3 −0.1 (3) C2—C1—C9—C10 59.0 (2)
C9—C1—C2—C3 177.71 (19) C6—C1—C9—C10 −123.23 (18)
C1—C2—C3—C4 0.5 (4) C8—C9—C10—C11 0.7 (2)
C2—C3—C4—C5 −0.1 (4) C1—C9—C10—C11 179.62 (14)
C3—C4—C5—C6 −0.7 (4) C8—C9—C10—C12 −177.38 (15)
C4—C5—C6—C1 1.2 (3) C1—C9—C10—C12 1.5 (2)
C2—C1—C6—C5 −0.8 (3) C9—C10—C11—O1 −0.3 (2)
C9—C1—C6—C5 −178.59 (17) C12—C10—C11—O1 177.82 (15)
O2—C7—C8—C9 179.99 (16) C9—C10—C11—C13 178.38 (16)
O1—C7—C8—C9 0.7 (2) C12—C10—C11—C13 −3.5 (3)
C7—C8—C9—C10 −1.0 (2) C10—C11—O1—C7 0.1 (2)
C7—C8—C9—C1 −179.88 (14) C13—C11—O1—C7 −178.77 (14)
C2—C1—C9—C8 −122.10 (19) O2—C7—O1—C11 −179.66 (14)
C6—C1—C9—C8 55.7 (2) C8—C7—O1—C11 −0.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.93 2.53 3.384 (2) 152
C13—H13A···O2ii 0.96 2.47 3.372 (3) 156

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2163).

References

  1. Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, B. L. & Munoz, E. (2007). J. Nat. Prod. 70, 608–612. [DOI] [PubMed]
  2. Bruker (2007). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fan, X., Wang, Y., Qu, Y., Xu, H., He, Y., Zhang, X. & Wang, J. (2011). J. Org. Chem. 76, 982–985. [DOI] [PubMed]
  4. Puerta, D. T., Mongan, J., Tran, B. L., McCammon, J. A. & Cohen, S. M. (2005). J. Am. Chem. Soc. 127, 14148–14149. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Thaisrivongs, S., Janakiraman, M. N., Chong, K.-T., Tomich, P. K., Dolak, L. A., Turner, S. R., Strohbach, J. W., Lynn, J. C., Horng, M.-M., Hinshaw, R. R. & Watenpaugh, K. D. (1998). J. Med. Chem. 39, 2400–2410. [DOI] [PubMed]
  7. Xu, H., Zhang, X., He, Y., Guo, S. & Fan, X. (2012). Chem. Commun. 48, 3121–3123. [DOI] [PubMed]
  8. Zhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024–5027. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812011233/vm2163sup1.cif

e-68-o1131-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011233/vm2163Isup2.hkl

e-68-o1131-Isup2.hkl (100KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011233/vm2163Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812011233/vm2163Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES