Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1136. doi: 10.1107/S1600536812010872

N-(2-Amino­pyridin-3-yl)-4-methyl-N-(4-methyl­phenyl­sulfon­yl)benzene­sulfonamide

Abu Taher a,*, Vincent J Smith a
PMCID: PMC3344082  PMID: 22606085

Abstract

The title compound, C19H19N3O4S2, was prepared by the reaction of 2,3-diamino­pyridine with tosyl chloride in a mixture of dichloro­methane–pyridine as solvent. In the crystal, mol­ecules associate via pairs of N—H⋯N hydrogen bonds, forming a centrosymmetric eight-membered {⋯HNCN}2 synthon. The dihedral angles between the amino­pyridine ring and the tosyl benzene rings are 50.01 (6) and 32.01 (4)°.

Related literature  

For the synthesis of related compounds, see: Schetty (1969); Dubey & Kumar (2000). For background to the application of ring-closing metathesis (RCM) on substrates protected with sulfonamide groups, see: Yadav et al. (2011); Morgans et al. (2009); van Otterlo et al. (2004). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o1136-scheme1.jpg

Experimental  

Crystal data  

  • C19H19N3O4S2

  • M r = 417.49

  • Triclinic, Inline graphic

  • a = 8.6343 (15) Å

  • b = 9.6486 (17) Å

  • c = 12.701 (2) Å

  • α = 111.324 (2)°

  • β = 90.109 (2)°

  • γ = 98.097 (2)°

  • V = 974.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 102 K

  • 0.25 × 0.25 × 0.25 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.928, T max = 0.928

  • 11658 measured reflections

  • 4644 independent reflections

  • 4381 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.086

  • S = 1.03

  • 4644 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010872/tk5064sup1.cif

e-68-o1136-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010872/tk5064Isup2.hkl

e-68-o1136-Isup2.hkl (227.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010872/tk5064Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.88 2.13 2.9948 (17) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

AT thanks the South African National Research Foundation (NRF), Pretoria, for providing an Innovation Fellowship, and Professor Willem A. L. van Otterlo for his valuable input and research oversight. Stellenbosch University’s Science Faculty is also acknowledged for providing laboratory space and additional financial research support.

supplementary crystallographic information

Comment

Aminopyridines and sulfonamides are structural units frequently found in the skeletons of bioactive compounds (Dubey et al., 2000). In this present communication the main aim was to synthesize pyridine-annulated heterocycles by using ring-closing metathesis (RCM) and in which the 2,3-disulfonamide-protected 2,3-diaminopyridine was required as substrate in continuation of previous work in our group combining sulfonamide protecting groups and RCM (Yadav et al., 2011; Morgans et al., 2009). However, in this particular case, when tosyl chloride was utilized in an attempt to 'mono' protect both amino groups on 2,3-diaminopyridine, only the 3,3-ditosyl compound, N-(2-amino-3-pyridinyl)-4-methyl-N-[(4-methylphenyl)sulfonyl]benzenesulfonamide (I), was isolated. In previous work by our group this behaviour was not observed with 2,3-diaminopyridine or 1,2-diaminobenzene as the substrate (van Otterlo et al., 2004). A literature search indicated that this type of selectivity is not common, see for instance Schetty (1969).

Crystallizing in the space group P1, (I) has a single molecule in the asymmetric unit (Fig. 1). In the crystal packing, the molecules associate via a centrosymmetric hydrogen bonded dimer with N—H···N hydrogen bonds interacting to form the hydrogen bonded ring motif R22(8) (Bernstein et al., 1995), Fig. 2. The mean planes passing through the tosyl benzene rings (C6–C11 and C13–C18) form dihedral angles with the aminopyridine ring (N1,C1–C5) of 50.01 (6) and 32.01 (4)°, respectively.

Experimental

2,3-Diaminopyridine (0.100 g, 0.917 mmol) was dissolved in a mixture of CH2Cl2 and pyridine (10 ml, 15:1). 4-Methylbenzene-1-sulfonyl chloride (0.524 g, 2.75 mol) was added and the solution was heated, with stirring, to 313 K for 24 h. The solution was allowed to cool to room temperature and washed with dilute HCl (15 ml, 1 M) and brine (3 × 15 ml), and then dried over Na2SO4. After filtration and removal of the solvent under vacuum, the residue was recrystallized from EtOH to give the product as a colourless crystalline material (0.260 g, 68%).

Refinement

H atoms were positioned geometrically [N—H = 0.88 Å; C—H = 0.95–0.98 Å; with Uiso(H) = 1.2–1.5Ueq(N,C)] and constrained to ride on their parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonding in the title compound, showing the hydrogen bonded ring motif. Intermolecular N—H···N hydrogen bonds are shown as dashed red lines. Symmetry code: -x + 1, -y + 2, -z

Crystal data

C19H19N3O4S2 Z = 2
Mr = 417.49 F(000) = 436
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6343 (15) Å Cell parameters from 8939 reflections
b = 9.6486 (17) Å θ = 2.3–28.6°
c = 12.701 (2) Å µ = 0.30 mm1
α = 111.324 (2)° T = 102 K
β = 90.109 (2)° Prisms, colourless
γ = 98.097 (2)° 0.25 × 0.25 × 0.25 mm
V = 974.2 (3) Å3

Data collection

Bruker APEXII CCD diffractometer 4644 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART APEX 4381 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
φ and ω scans θmax = 28.8°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.928, Tmax = 0.928 k = −12→12
11658 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.5018P] where P = (Fo2 + 2Fc2)/3
4644 reflections (Δ/σ)max = 0.001
256 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.69360 (4) 0.75142 (4) 0.30733 (3) 0.02336 (9)
S2 0.37246 (3) 0.60784 (3) 0.20345 (2) 0.01765 (8)
N3 0.52302 (12) 0.75248 (12) 0.24209 (9) 0.0186 (2)
N1 0.47716 (14) 1.06813 (12) 0.15011 (9) 0.0230 (2)
C5 0.49000 (14) 0.89680 (13) 0.24605 (10) 0.0175 (2)
C15 0.27102 (16) 0.57171 (14) 0.50145 (11) 0.0232 (3)
H15 0.3074 0.5249 0.5489 0.028*
C4 0.43923 (15) 0.99755 (14) 0.34312 (10) 0.0212 (2)
N2 0.55336 (14) 0.84049 (12) 0.04958 (9) 0.0226 (2)
H2A 0.5627 0.8686 −0.0090 0.027*
H2B 0.5743 0.7515 0.0439 0.027*
O1 0.43589 (12) 0.47071 (10) 0.15842 (8) 0.0268 (2)
O2 0.26982 (11) 0.64689 (10) 0.13384 (7) 0.02197 (19)
C13 0.28268 (14) 0.62087 (13) 0.32986 (10) 0.0181 (2)
O3 0.71981 (12) 0.88223 (13) 0.40887 (8) 0.0331 (2)
C11 0.92648 (15) 0.91006 (14) 0.23608 (11) 0.0221 (2)
H11 0.9222 0.9901 0.3065 0.027*
O4 0.68588 (12) 0.60577 (13) 0.31366 (10) 0.0358 (3)
C7 0.83292 (15) 0.65472 (14) 0.10759 (11) 0.0231 (3)
H7 0.7664 0.5614 0.0915 0.028*
C18 0.16083 (15) 0.70512 (14) 0.36120 (11) 0.0221 (2)
H18 0.1229 0.7499 0.3129 0.027*
C6 0.82897 (14) 0.77329 (14) 0.21034 (10) 0.0193 (2)
C1 0.50712 (14) 0.93365 (13) 0.14787 (10) 0.0189 (2)
C8 0.93574 (15) 0.67576 (15) 0.02953 (11) 0.0241 (3)
H8 0.9385 0.5962 −0.0413 0.029*
C3 0.40867 (17) 1.13551 (14) 0.34406 (11) 0.0257 (3)
H3 0.3740 1.2072 0.4097 0.031*
C2 0.43063 (18) 1.16433 (14) 0.24579 (11) 0.0268 (3)
H2 0.4113 1.2591 0.2463 0.032*
C16 0.15029 (16) 0.65788 (14) 0.53587 (11) 0.0238 (3)
C17 0.09552 (16) 0.72267 (15) 0.46422 (12) 0.0249 (3)
H17 0.0120 0.7799 0.4862 0.030*
C14 0.33857 (15) 0.55326 (14) 0.39957 (11) 0.0210 (2)
H14 0.4216 0.4956 0.3774 0.025*
C19 0.0856 (2) 0.68232 (16) 0.65014 (12) 0.0327 (3)
H19B 0.0813 0.5900 0.6663 0.049*
H19C −0.0202 0.7083 0.6503 0.049*
H19A 0.1535 0.7646 0.7083 0.049*
C9 1.03573 (15) 0.81185 (15) 0.05290 (11) 0.0227 (2)
C10 1.03021 (15) 0.92753 (15) 0.15694 (11) 0.0242 (3)
H10 1.0986 1.0200 0.1741 0.029*
C12 1.14802 (17) 0.83002 (19) −0.03295 (13) 0.0327 (3)
H12A 1.1896 0.9369 −0.0127 0.049*
H12C 1.0932 0.7913 −0.1080 0.049*
H12B 1.2345 0.7738 −0.0343 0.049*
H4 0.4215 0.9725 0.4113 0.023 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02049 (15) 0.03476 (18) 0.02280 (16) 0.00556 (12) 0.00028 (11) 0.01947 (14)
S2 0.02354 (15) 0.01561 (14) 0.01636 (14) 0.00353 (10) 0.00067 (11) 0.00870 (11)
N3 0.0183 (5) 0.0210 (5) 0.0219 (5) 0.0032 (4) −0.0003 (4) 0.0144 (4)
N1 0.0351 (6) 0.0178 (5) 0.0182 (5) 0.0031 (4) 0.0017 (4) 0.0094 (4)
C5 0.0201 (5) 0.0174 (5) 0.0174 (5) 0.0008 (4) −0.0012 (4) 0.0100 (4)
C15 0.0310 (7) 0.0209 (6) 0.0200 (6) 0.0009 (5) −0.0011 (5) 0.0114 (5)
C4 0.0253 (6) 0.0227 (6) 0.0150 (5) −0.0010 (5) −0.0015 (4) 0.0079 (5)
N2 0.0330 (6) 0.0220 (5) 0.0189 (5) 0.0095 (4) 0.0068 (4) 0.0125 (4)
O1 0.0401 (5) 0.0198 (4) 0.0242 (5) 0.0107 (4) 0.0069 (4) 0.0104 (4)
O2 0.0276 (5) 0.0205 (4) 0.0193 (4) 0.0003 (3) −0.0052 (3) 0.0103 (3)
C13 0.0216 (5) 0.0162 (5) 0.0181 (5) 0.0008 (4) 0.0011 (4) 0.0087 (4)
O3 0.0264 (5) 0.0553 (7) 0.0172 (4) 0.0067 (4) −0.0019 (4) 0.0129 (4)
C11 0.0253 (6) 0.0201 (6) 0.0211 (6) 0.0042 (5) −0.0016 (5) 0.0074 (5)
O4 0.0273 (5) 0.0486 (6) 0.0519 (7) 0.0088 (4) 0.0025 (5) 0.0412 (6)
C7 0.0204 (6) 0.0199 (6) 0.0282 (6) 0.0015 (4) −0.0016 (5) 0.0083 (5)
C18 0.0225 (6) 0.0223 (6) 0.0258 (6) 0.0039 (5) 0.0009 (5) 0.0135 (5)
C6 0.0176 (5) 0.0229 (6) 0.0212 (6) 0.0047 (4) 0.0003 (4) 0.0119 (5)
C1 0.0224 (6) 0.0188 (5) 0.0173 (5) 0.0008 (4) −0.0001 (4) 0.0095 (4)
C8 0.0218 (6) 0.0245 (6) 0.0236 (6) 0.0061 (5) −0.0005 (5) 0.0051 (5)
C3 0.0376 (7) 0.0189 (6) 0.0172 (6) 0.0027 (5) 0.0011 (5) 0.0034 (5)
C2 0.0425 (8) 0.0156 (5) 0.0219 (6) 0.0035 (5) 0.0010 (5) 0.0067 (5)
C16 0.0305 (6) 0.0183 (6) 0.0201 (6) −0.0030 (5) 0.0027 (5) 0.0065 (5)
C17 0.0250 (6) 0.0222 (6) 0.0282 (7) 0.0048 (5) 0.0055 (5) 0.0097 (5)
C14 0.0253 (6) 0.0186 (5) 0.0219 (6) 0.0032 (4) 0.0000 (5) 0.0108 (5)
C19 0.0476 (9) 0.0257 (7) 0.0223 (6) 0.0010 (6) 0.0104 (6) 0.0078 (5)
C9 0.0188 (6) 0.0293 (6) 0.0238 (6) 0.0056 (5) −0.0001 (5) 0.0135 (5)
C10 0.0244 (6) 0.0217 (6) 0.0272 (6) −0.0009 (5) −0.0020 (5) 0.0115 (5)
C12 0.0263 (7) 0.0470 (9) 0.0290 (7) 0.0048 (6) 0.0046 (5) 0.0193 (6)

Geometric parameters (Å, º)

S1—O4 1.4289 (11) C11—H11 0.9500
S1—O3 1.4290 (11) C7—C8 1.3824 (19)
S1—N3 1.6916 (11) C7—C6 1.3923 (18)
S1—C6 1.7472 (13) C7—H7 0.9500
S2—O1 1.4257 (10) C18—C17 1.3884 (18)
S2—O2 1.4292 (9) C18—H18 0.9500
S2—N3 1.6932 (11) C8—C9 1.3978 (19)
S2—C13 1.7549 (12) C8—H8 0.9500
N3—C5 1.4435 (15) C3—C2 1.3818 (18)
N1—C2 1.3365 (17) C3—H3 0.9500
N1—C1 1.3487 (16) C2—H2 0.9500
C5—C4 1.3812 (17) C16—C17 1.3921 (19)
C5—C1 1.4183 (16) C16—C19 1.5052 (18)
C15—C14 1.3824 (18) C17—H17 0.9500
C15—C16 1.3966 (19) C14—H14 0.9500
C15—H15 0.9500 C19—H19B 0.9800
C4—C3 1.3889 (18) C19—H19C 0.9800
C4—H4 0.9869 C19—H19A 0.9800
N2—C1 1.3463 (16) C9—C10 1.3916 (19)
N2—H2A 0.8800 C9—C12 1.5017 (18)
N2—H2B 0.8800 C10—H10 0.9500
C13—C18 1.3905 (17) C12—H12A 0.9800
C13—C14 1.3962 (16) C12—H12C 0.9800
C11—C10 1.3875 (19) C12—H12B 0.9800
C11—C6 1.3891 (17)
O4—S1—O3 119.52 (7) C11—C6—S1 119.22 (10)
O4—S1—N3 106.78 (6) C7—C6—S1 119.13 (10)
O3—S1—N3 108.02 (6) N2—C1—N1 116.60 (11)
O4—S1—C6 110.55 (6) N2—C1—C5 123.35 (11)
O3—S1—C6 108.89 (6) N1—C1—C5 120.04 (11)
N3—S1—C6 101.52 (5) C7—C8—C9 121.25 (12)
O1—S2—O2 120.02 (6) C7—C8—H8 119.4
O1—S2—N3 108.18 (6) C9—C8—H8 119.4
O2—S2—N3 103.63 (5) C2—C3—C4 117.37 (12)
O1—S2—C13 110.28 (6) C2—C3—H3 121.3
O2—S2—C13 108.76 (6) C4—C3—H3 121.3
N3—S2—C13 104.73 (5) N1—C2—C3 124.53 (12)
C5—N3—S1 116.80 (8) N1—C2—H2 117.7
C5—N3—S2 117.39 (8) C3—C2—H2 117.7
S1—N3—S2 123.89 (6) C17—C16—C15 118.80 (12)
C2—N1—C1 118.78 (11) C17—C16—C19 121.52 (13)
C4—C5—C1 119.84 (11) C15—C16—C19 119.66 (12)
C4—C5—N3 120.91 (10) C18—C17—C16 121.10 (12)
C1—C5—N3 119.23 (11) C18—C17—H17 119.4
C14—C15—C16 121.18 (12) C16—C17—H17 119.4
C14—C15—H15 119.4 C15—C14—C13 118.87 (12)
C16—C15—H15 119.4 C15—C14—H14 120.6
C5—C4—C3 119.42 (11) C13—C14—H14 120.6
C5—C4—H4 121.4 C16—C19—H19B 109.5
C3—C4—H4 119.2 C16—C19—H19C 109.5
C1—N2—H2A 120.0 H19B—C19—H19C 109.5
C1—N2—H2B 120.0 C16—C19—H19A 109.5
H2A—N2—H2B 120.0 H19B—C19—H19A 109.5
C18—C13—C14 121.12 (11) H19C—C19—H19A 109.5
C18—C13—S2 118.79 (9) C10—C9—C8 118.77 (12)
C14—C13—S2 120.02 (10) C10—C9—C12 121.34 (12)
C10—C11—C6 118.68 (12) C8—C9—C12 119.89 (13)
C10—C11—H11 120.7 C11—C10—C9 121.12 (12)
C6—C11—H11 120.7 C11—C10—H10 119.4
C8—C7—C6 118.56 (12) C9—C10—H10 119.4
C8—C7—H7 120.7 C9—C12—H12A 109.5
C6—C7—H7 120.7 C9—C12—H12C 109.5
C17—C18—C13 118.91 (12) H12A—C12—H12C 109.5
C17—C18—H18 120.5 C9—C12—H12B 109.5
C13—C18—H18 120.5 H12A—C12—H12B 109.5
C11—C6—C7 121.62 (12) H12C—C12—H12B 109.5
O4—S1—N3—C5 167.92 (9) O4—S1—C6—C11 −139.70 (10)
O3—S1—N3—C5 38.18 (10) O3—S1—C6—C11 −6.50 (12)
C6—S1—N3—C5 −76.26 (10) N3—S1—C6—C11 107.29 (10)
O4—S1—N3—S2 4.12 (10) O4—S1—C6—C7 42.35 (12)
O3—S1—N3—S2 −125.62 (8) O3—S1—C6—C7 175.54 (10)
C6—S1—N3—S2 119.94 (8) N3—S1—C6—C7 −70.67 (11)
O1—S2—N3—C5 155.43 (9) C2—N1—C1—N2 179.88 (12)
O2—S2—N3—C5 27.00 (10) C2—N1—C1—C5 −0.38 (19)
C13—S2—N3—C5 −86.95 (9) C4—C5—C1—N2 −178.83 (12)
O1—S2—N3—S1 −40.86 (9) N3—C5—C1—N2 −0.11 (18)
O2—S2—N3—S1 −169.29 (7) C4—C5—C1—N1 1.45 (18)
C13—S2—N3—S1 76.76 (8) N3—C5—C1—N1 −179.83 (11)
S1—N3—C5—C4 −76.63 (13) C6—C7—C8—C9 0.90 (19)
S2—N3—C5—C4 88.25 (13) C5—C4—C3—C2 0.3 (2)
S1—N3—C5—C1 104.66 (11) C1—N1—C2—C3 −0.8 (2)
S2—N3—C5—C1 −90.46 (12) C4—C3—C2—N1 0.9 (2)
C1—C5—C4—C3 −1.36 (19) C14—C15—C16—C17 1.58 (19)
N3—C5—C4—C3 179.93 (11) C14—C15—C16—C19 −176.71 (12)
O1—S2—C13—C18 −152.71 (10) C13—C18—C17—C16 0.2 (2)
O2—S2—C13—C18 −19.17 (12) C15—C16—C17—C18 −1.2 (2)
N3—S2—C13—C18 91.11 (11) C19—C16—C17—C18 177.04 (12)
O1—S2—C13—C14 30.27 (12) C16—C15—C14—C13 −0.86 (19)
O2—S2—C13—C14 163.81 (10) C18—C13—C14—C15 −0.24 (19)
N3—S2—C13—C14 −85.91 (11) S2—C13—C14—C15 176.71 (9)
C14—C13—C18—C17 0.59 (19) C7—C8—C9—C10 −0.14 (19)
S2—C13—C18—C17 −176.40 (10) C7—C8—C9—C12 178.92 (12)
C10—C11—C6—C7 −0.19 (19) C6—C11—C10—C9 0.98 (19)
C10—C11—C6—S1 −178.09 (10) C8—C9—C10—C11 −0.82 (19)
C8—C7—C6—C11 −0.73 (19) C12—C9—C10—C11 −179.86 (12)
C8—C7—C6—S1 177.17 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N1i 0.88 2.13 2.9948 (17) 166

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5064).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dubey, P. K. & Kumar, R. V. (2000). J. Indian Chem. Soc. B, 39, 746–751.
  5. Morgans, G. L., Ngidi, E. L., Madeley, L. G., Khanye, S. D., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2009). Tetrahedron, 65, 10650–10659.
  6. Otterlo, W. A. L. van, Morgans, G. L., Khanye, S. D., Aderibigbe, B. A. A., Michael, J. P. & Fernandes, M. A. (2004). Tetrahedron Lett. 45, 9171–9175.
  7. Schetty, G. (1969). Helv. Chim. Acta, 52, 1796–1802.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991–2997.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010872/tk5064sup1.cif

e-68-o1136-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010872/tk5064Isup2.hkl

e-68-o1136-Isup2.hkl (227.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010872/tk5064Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES