Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 21;68(Pt 4):o1137. doi: 10.1107/S1600536812011464

3′,4′-Dimeth­oxy­biphenyl-4-carbonitrile

Xin-Min Li a, Yan-Jun Hou a, Peng Mei a, Wen-Yi Chu a,*, Zhi-Zhong Sun a
PMCID: PMC3344083  PMID: 22606086

Abstract

The title compound, C15H13NO2, was prepared through a palladium-catalysed Suzuki–Miyaura coupling reaction. The dihedral angle between the biphenyl rings is 40.96 (6)°. The meth­oxy groups are twisted slightly out of the plane of the benzene ring [C—C—C—C torsion angles = −3.61 (18) and 12.6 (2)°]. The packing of the molecules is stabilized by van der Waals inter­actions.

Related literature  

For general background to the synthesis and properties of 3′,4′-dimeth­oxy­biphenyl-4-carbonitrile, see: Suzuki (1999); Razler et al. (2009); Hou et al. (2011). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).graphic file with name e-68-o1137-scheme1.jpg

Experimental  

Crystal data  

  • C15H13NO2

  • M r = 239.26

  • Monoclinic, Inline graphic

  • a = 9.1568 (10) Å

  • b = 7.7541 (8) Å

  • c = 17.6764 (19) Å

  • β = 96.266 (1)°

  • V = 1247.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.32 × 0.30 × 0.26 mm

Data collection  

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.978

  • 8149 measured reflections

  • 2399 independent reflections

  • 1839 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.104

  • S = 1.05

  • 2399 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011464/bx2401sup1.cif

e-68-o1137-sup1.cif (17KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812011464/bx2401Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011464/bx2401Isup3.hkl

e-68-o1137-Isup3.hkl (117.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011464/bx2401Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20872030), the Foundation of Heilongjiang Education Committee (No. 12511383) and the Key Laboratory of Chemical Engineering Processes and Technology for High-efficiency Conversion, College of Heilongjiang Province and Heilongjiang University, China, for supporting this study.

supplementary crystallographic information

Comment

Considerable interest shows the palladium-catalyzed Suzuki-Miyaura coupling reaction and the biological activity of biphenyl derivatives (Suzuki, 1999; Razler et al., 2009; Kimpe et al., 1996; Hou et al., 2011). We have prepare 3',4'-dimethoxybiphenyl-4 -carbonitrile as a potential antiviral activity compound. In the title compound, Fig. 1, the dihedral angle of the biphenyl moiety is 40.96 (6)°. The methoxy groups are slightly twisted out of the plane of the benzene ring 3.65 (12) & 12.40 (13)° at C10 and C11 position respectively. The crystal structure is stabilized by van der waals interactions.

Experimental

To a solution of 4-bromobenzonitrile (5 mmol) and 3,4-dimethoxyphenylboronic acid (6 mmol) in 20 ml water and 20 ml methanol was added Pd(OAc)2 (5 mmol) and K2CO3 (10 mmol). After stirring the reaction mixture for 8 h at 318 K. The aqueous phases were extracted with 100 ml ethyl acetate. The organic extracts were washed with 200 ml saturated aqueous sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified via silica gel chromatography (petroleum ether) to afford a translucent solid in a yield of 76%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 36%. Analysis found: C 75.3, H 5.6, N 6.0%; C15H13NO2 requires: C 75.3, H 5.5, N 5.9%. 1H NMR (400 MHz, CDCl3) 7.78 (m, 2H), 7.64 (m, 2H), 7.17 (dd, J = 8.3, 2.1 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H).

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms. C—H distances are in the range 0.93-0.96 Å. Uiso(H) values were constrained to be 1.2Ueq(C) (aromatic H atoms) [1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound I, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C15H13NO2 F(000) = 504
Mr = 239.26 Dx = 1.274 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2577 reflections
a = 9.1568 (10) Å θ = 2.9–25.8°
b = 7.7541 (8) Å µ = 0.09 mm1
c = 17.6764 (19) Å T = 295 K
β = 96.266 (1)° Block, colorless
V = 1247.6 (2) Å3 0.32 × 0.30 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 2399 independent reflections
Radiation source: fine-focus sealed tube 1839 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
phi and ω scans θmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.973, Tmax = 0.978 k = −9→8
8149 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1238P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2399 reflections Δρmax = 0.15 e Å3
166 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.017 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.14237 (10) 0.09170 (14) 0.04364 (6) 0.0626 (3)
C8 0.55897 (13) 0.10197 (17) 0.16381 (6) 0.0431 (3)
C9 0.51177 (13) −0.03577 (17) 0.11570 (6) 0.0420 (3)
H9 0.5753 −0.1271 0.1096 0.050*
C5 0.70869 (13) 0.10066 (16) 0.20533 (7) 0.0432 (3)
C10 0.37226 (13) −0.03711 (17) 0.07734 (6) 0.0425 (3)
O2 0.31442 (9) −0.16798 (13) 0.03141 (5) 0.0546 (3)
C11 0.27761 (13) 0.10261 (18) 0.08472 (7) 0.0475 (3)
C13 0.46307 (14) 0.23659 (19) 0.17187 (8) 0.0526 (4)
H13 0.4923 0.3277 0.2043 0.063*
C4 0.82954 (14) 0.04428 (19) 0.17115 (8) 0.0520 (4)
H4 0.8170 0.0075 0.1208 0.062*
C3 0.96813 (15) 0.04188 (19) 0.21075 (9) 0.0568 (4)
H3 1.0483 0.0055 0.1869 0.068*
C12 0.32371 (15) 0.23763 (19) 0.13225 (8) 0.0554 (4)
H12 0.2609 0.3300 0.1378 0.066*
C6 0.73122 (15) 0.15651 (19) 0.28075 (7) 0.0522 (3)
H6 0.6519 0.1970 0.3043 0.063*
C7 0.86821 (15) 0.1529 (2) 0.32089 (8) 0.0585 (4)
H7 0.8809 0.1900 0.3712 0.070*
C2 0.98743 (15) 0.09404 (18) 0.28652 (8) 0.0552 (4)
C14 0.40771 (15) −0.30952 (19) 0.01883 (8) 0.0569 (4)
H14A 0.4924 −0.2685 −0.0033 0.085*
H14B 0.3552 −0.3904 −0.0152 0.085*
H14C 0.4384 −0.3652 0.0664 0.085*
C15 0.05399 (16) 0.2429 (2) 0.03800 (10) 0.0692 (5)
H15A 0.0321 0.2764 0.0878 0.104*
H15B −0.0359 0.2199 0.0064 0.104*
H15C 0.1061 0.3343 0.0160 0.104*
C1 1.13159 (18) 0.0889 (2) 0.32852 (10) 0.0703 (5)
N1 1.24412 (18) 0.0863 (2) 0.36292 (10) 0.1005 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0425 (5) 0.0668 (7) 0.0749 (7) 0.0073 (5) −0.0095 (4) −0.0125 (5)
C8 0.0431 (7) 0.0452 (8) 0.0406 (6) −0.0020 (6) 0.0025 (5) −0.0018 (5)
C9 0.0407 (7) 0.0414 (7) 0.0437 (6) 0.0013 (5) 0.0044 (5) −0.0018 (5)
C5 0.0457 (7) 0.0389 (7) 0.0440 (7) −0.0037 (5) 0.0001 (5) −0.0005 (5)
C10 0.0433 (7) 0.0435 (7) 0.0405 (6) −0.0040 (6) 0.0042 (5) −0.0042 (5)
O2 0.0467 (5) 0.0526 (6) 0.0624 (6) −0.0005 (4) −0.0030 (4) −0.0167 (4)
C11 0.0381 (6) 0.0545 (8) 0.0489 (7) 0.0007 (6) 0.0001 (5) −0.0031 (6)
C13 0.0518 (8) 0.0512 (9) 0.0536 (8) 0.0016 (6) −0.0002 (6) −0.0143 (6)
C4 0.0487 (8) 0.0546 (9) 0.0515 (7) −0.0009 (6) 0.0000 (6) −0.0093 (6)
C3 0.0471 (8) 0.0523 (9) 0.0700 (9) 0.0002 (6) 0.0014 (6) −0.0052 (7)
C12 0.0479 (7) 0.0523 (9) 0.0650 (9) 0.0094 (6) 0.0022 (6) −0.0118 (7)
C6 0.0526 (7) 0.0568 (9) 0.0466 (7) −0.0028 (7) 0.0023 (6) −0.0042 (6)
C7 0.0647 (9) 0.0609 (10) 0.0467 (7) −0.0092 (7) −0.0077 (7) −0.0009 (6)
C2 0.0519 (8) 0.0429 (8) 0.0665 (9) −0.0068 (6) −0.0128 (7) 0.0069 (6)
C14 0.0606 (8) 0.0495 (9) 0.0602 (8) 0.0003 (7) 0.0044 (7) −0.0145 (6)
C15 0.0512 (8) 0.0735 (11) 0.0792 (10) 0.0127 (8) −0.0097 (7) 0.0050 (8)
C1 0.0652 (10) 0.0561 (10) 0.0830 (11) −0.0044 (8) −0.0216 (9) 0.0080 (8)
N1 0.0749 (10) 0.0913 (12) 0.1230 (14) −0.0034 (9) −0.0452 (10) 0.0111 (10)

Geometric parameters (Å, º)

O3—C11 1.3681 (15) C4—H4 0.9300
O3—C15 1.4217 (18) C3—C2 1.392 (2)
C8—C13 1.3814 (18) C3—H3 0.9300
C8—C9 1.4038 (17) C12—H12 0.9300
C8—C5 1.4828 (16) C6—C7 1.3724 (18)
C9—C10 1.3794 (16) C6—H6 0.9300
C9—H9 0.9300 C7—C2 1.383 (2)
C5—C4 1.3880 (18) C7—H7 0.9300
C5—C6 1.3954 (17) C2—C1 1.4426 (19)
C10—O2 1.3695 (15) C14—H14A 0.9600
C10—C11 1.4023 (18) C14—H14B 0.9600
O2—C14 1.4231 (17) C14—H14C 0.9600
C11—C12 1.3795 (19) C15—H15A 0.9600
C13—C12 1.3870 (18) C15—H15B 0.9600
C13—H13 0.9300 C15—H15C 0.9600
C4—C3 1.3809 (18) C1—N1 1.1381 (18)
C11—O3—C15 117.49 (11) C11—C12—C13 120.43 (12)
C13—C8—C9 118.70 (11) C11—C12—H12 119.8
C13—C8—C5 121.20 (11) C13—C12—H12 119.8
C9—C8—C5 120.10 (11) C7—C6—C5 121.27 (13)
C10—C9—C8 120.72 (11) C7—C6—H6 119.4
C10—C9—H9 119.6 C5—C6—H6 119.4
C8—C9—H9 119.6 C6—C7—C2 120.02 (12)
C4—C5—C6 118.15 (11) C6—C7—H7 120.0
C4—C5—C8 121.65 (11) C2—C7—H7 120.0
C6—C5—C8 120.20 (11) C7—C2—C3 119.67 (12)
O2—C10—C9 125.07 (11) C7—C2—C1 120.31 (14)
O2—C10—C11 115.12 (11) C3—C2—C1 120.01 (14)
C9—C10—C11 119.81 (11) O2—C14—H14A 109.5
C10—O2—C14 117.66 (10) O2—C14—H14B 109.5
O3—C11—C12 124.69 (12) H14A—C14—H14B 109.5
O3—C11—C10 115.83 (11) O2—C14—H14C 109.5
C12—C11—C10 119.46 (11) H14A—C14—H14C 109.5
C8—C13—C12 120.83 (12) H14B—C14—H14C 109.5
C8—C13—H13 119.6 O3—C15—H15A 109.5
C12—C13—H13 119.6 O3—C15—H15B 109.5
C3—C4—C5 121.05 (12) H15A—C15—H15B 109.5
C3—C4—H4 119.5 O3—C15—H15C 109.5
C5—C4—H4 119.5 H15A—C15—H15C 109.5
C4—C3—C2 119.80 (14) H15B—C15—H15C 109.5
C4—C3—H3 120.1 N1—C1—C2 178.6 (2)
C2—C3—H3 120.1
C13—C8—C9—C10 −0.17 (18) C5—C8—C13—C12 179.36 (12)
C5—C8—C9—C10 179.33 (11) C6—C5—C4—C3 0.6 (2)
C13—C8—C5—C4 −139.90 (14) C8—C5—C4—C3 −179.25 (12)
C9—C8—C5—C4 40.61 (18) C5—C4—C3—C2 1.0 (2)
C13—C8—C5—C6 40.26 (18) O3—C11—C12—C13 179.70 (13)
C9—C8—C5—C6 −139.23 (13) C10—C11—C12—C13 0.7 (2)
C8—C9—C10—O2 −177.57 (11) C8—C13—C12—C11 0.9 (2)
C8—C9—C10—C11 1.74 (18) C4—C5—C6—C7 −1.3 (2)
C9—C10—O2—C14 −3.61 (18) C8—C5—C6—C7 178.53 (12)
C11—C10—O2—C14 177.05 (11) C5—C6—C7—C2 0.4 (2)
C15—O3—C11—C12 12.6 (2) C6—C7—C2—C3 1.2 (2)
C15—O3—C11—C10 −168.41 (13) C6—C7—C2—C1 −179.64 (14)
O2—C10—C11—O3 −1.71 (16) C4—C3—C2—C7 −2.0 (2)
C9—C10—C11—O3 178.92 (11) C4—C3—C2—C1 178.93 (14)
O2—C10—C11—C12 177.36 (12) C7—C2—C1—N1 0 (7)
C9—C10—C11—C12 −2.01 (19) C3—C2—C1—N1 179 (100)
C9—C8—C13—C12 −1.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2401).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915. [DOI] [PMC free article] [PubMed]
  3. Kimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635–636.
  4. Razler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381–1384. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Suzuki, A. (1999). J. Organomet. Chem. 576, 147–168.
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011464/bx2401sup1.cif

e-68-o1137-sup1.cif (17KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812011464/bx2401Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011464/bx2401Isup3.hkl

e-68-o1137-Isup3.hkl (117.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011464/bx2401Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES